BMS

Institute of Technology and Management
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

NETWORK THEORY 18EC32

STUDY MATERIAL

III SEMESTER

Content	Page No.
Module 1: BASIC CONCEPTS	$2-107$
Module 2: NETWORK THEOREMS	$108-176$
Module 3: TRANSIENT BEHAVIOUR AND INITIAL CONDITIONS	$177-200$
Module 4: LAPLACE TRANSFORM AND ITS APPLICATIONS	$201-250$
Module 5: TWOPORT NETWORK, RESONACE CIRCUITS	$251-370$

NETWORK ANALYSIS (18EC32)

Syllabus:-

Module -1

Basic Concepts: Practical sources, Source transformations, Network reduction using Star - Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh.

Text Books:

1. M.E. Van Valkenberg (2000), "Network analysis", Prentice Hall of India, $3^{\text {rd }}$ edition, 2000, ISBN: 9780136110958.
2. Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publications, 2006, ISBN: 9788122427677.

Reference Books:

1. Hayt, Kemmerly and Durbin "Engineering Circuit Analysis", TMH 7th Edition, 2010.
2.J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8th edition, 2006.
2. Charles K Alexander and Mathew N O Sadiku, "Fundamentals of Electric Circuits", Tata McGraw-Hill, 3rd Ed, 2009.

Thory Eunstion's.
ai). Euplain.

1. Unilateral and Bilateral lements
2. Independent and dependent Soures.
3. Linear and Nentimar.
a. Active and panive clemento
4. Lumped and distributed.
5. Ideal and practical Souries.

Solui-1. Unilateral and Biladeral denent's
UnilateralC. V-E chorasteristio. in to be altered whes the diration of Curnt in to be change. s. mone.
Ex:- diode, Transintor.
BilatialS- V-I cheratenition remain's Same irusputive of
Eurrent diraction: deprondent onthe droch of Lement then the bient
Ex:- Resinto:, capacitor, Indator. in called Bnidicutional (A) It $V=$ If $\quad q=C \overline{ }$
1 Anclementrn kin Sameingdanetor ledifientariath of
Same cument otherwhe it + n sad to be Unilatral.
independent to the diration of the cument. ther the clment in called astractional (a) bilatralcement.

Ex:- idealf practical.

* The strunth of moperaded Endepsent sourus dounnot not depuntion
the any of the dit prom the any of the ut param, Exi. idealf voitar turment voltage tument
Soures.
 practicaldoncus

3. Linear and Nor-Linear clomentio

Limerese. Atwo ferminal demint in said to be Lineas if for all fime ' t ' itn chractristicsins struight. Line through the origin otherwise it in said tobe nontimar.
Q. x elemnt's which obey; ohnis haw.
\rightarrow Eliment which obap'the principle of superpaition (additivity and tionognaty mule).
Expe R, L, G.
Non-Limears * A two terminal Elementi in said to be xom-Linear if torall time ' t ith ctractisitio in nota Straight line teat panes thrugh orign.

- Dourit obcajs ohmishaw.
be fail's to obsy' the grincipley Superpenition.
Exar Diode, transintor, Aranstomes cte, an vopindent Ciment 5 ames.

7: Actire (o) parreclimento
Active bomenf! shon doment in capable of divienng courgy independentley for infritic time (0) Nhim the clement in tiaving property of interial amplication (a) Ingaial rectifiation then the delement in called is adreclement.

Ex.- Independent voltage and current. Savers
\checkmark (D) I Diode, franintor ctec.
 carogy (a1) not copable to do signad amplification (98) -19 corogy (a) not cappable to do called as ponneceronents 17 reatication then it in called as ponre carn cil
Exp:- R, L, G, bultiz: transtomes de.
5. Lumpled \& Dintipoted limention

Lumped celimentingor

* ohmis Law can be applicete for Lumed (Lineor) climentis
* R, L, and G conbe Separable.
$*$ An Limed aluminfor $\quad A \gg l$.
Exd $R ; \ddot{\alpha}, \because C$.
Distributed clomention
\rightarrow KVL and KClfail? for diatribated prametsin Sme in diotributed paramitein clutrically, it so not parible to sporater mosintance, Indutance ; and copocitance stsect.
* best ohmis haw conbe applied for Lumped and dintributed pranateis. Ex:- Coarial cable, Tranomimion En ete

Time vanging and Time- Anvargornt tliment's
An denent in said tobe Tme-invaniant ifall time ito - cherateristicn dounot chage with time, othen wine it is

Suid to be time -varying:
Ex: $Q, L, C \leftarrow$ Tme Envariant clementr.
Idcal and pratical Souresir
\rightarrow Ideal voltage Soune! Ideal voltage saine: delivorse courgy at the Spuificd voltage (v), which is indepondent on Cumnt delivoud by thin Source -

$Y_{5}=0^{\circ}$
practical voltage Soune delivorcu energy at spentid viottag (v) which dyand'o on Cument deliroved by the Soune.

\rightarrow Ideal Cument Sorreer
Ideal Curint Soure delivore conigy at speatied Cument (I) which in indepindent on voltege curon the Source. Interal: rentance of idal Cement sauce $=\infty$,

$$
R=\infty \Omega
$$

\rightarrow pratical Eument Saruel
practicat Cumnt Soure delivmensenry. at Speufied Coment (I)
shit depend's on voltage acrom the Soure.

3. Lincor and Nor-dover chenent bo

Limers! t two teminal clemint in said tobe kivas if tor all time ' t ' ith chratristis in struight Line though the origin other wis it in said tobe nontinar.
(a) * elennt! which obey; ohnis haw.
\rightarrow Elimant which days the pronciple of supupaition (additrity and tiongunty null).
Expe R, L, G.
Non-timens!- A two terminal Eumntio in said tobe xoo-Linear if to all time 't ith chratsistion in not a straight dine teat pansisthagh ongn.

- Donrit obecjs ohmilaw.
se fail's to obsy' the principley Supuprition.
Ex' Diode, transintor, trantomis cte an dipindent cinant Smeses.

4. Adire (o) panmedimento
 independently for infinitic time (C) Nbim the clement in taving property of internal ampliction (a) simanal ratitiation then the delement in called as adreclement.

Ex.- Indepandent voltege and Cument. Savas
$v \nsubseteq$, कi:, Diode, franintor ife
 corsy (an not copable to do sigual amplification (4) reatication then it in called as ponte dement
Expl- R, L, G, baltis, franstomer de \therefore
5. Lenplad \& Duntribded limentio

Lumped clementin $o r$

* Ohmi Law can be cappliset for Lumud (Lineot) dimentio
* R, L, and G conbe Seprable.
* In Limed etlumintir $\lambda \gg l$.

Exd R; α, c.
Dostributed clomentiol
x Kv2 and kClfail'o for ditribated poramatrio Snue in distributed parantain clutrically, it in not parible to spoada $\frac{\text { or }}{\sim}$ mosintances, Indutance, and capocitance Stsect.

* Lut ohmis haw conbe applied tor Lumped and dimbinawed proanters. Ex:- Coarial cable, Tranmmion ete. te EPage 6

Stor \Leftrightarrow D. sta transformations SS-

* Nae reduction tool.

Star| Y Msw.

d) Ster to \triangle Conversion S\cdots given z_{1}, z_{i}, and $z_{B} \Rightarrow z_{A B}, z_{C A}, z_{B C}$.

$$
\begin{aligned}
& z_{A B}=z_{1}+z_{2}+\frac{\bar{z}}{1} z_{2} \\
& z_{3} \\
&=\frac{z_{1} z_{3}+z_{2} z_{3}+z_{1} z_{2}}{z_{3}}=\frac{\sum z_{1} z_{2}}{z_{3}} u
\end{aligned}
$$

$$
\begin{aligned}
& u_{y} z_{B C}=z_{2}+z_{3}+\frac{z_{2} z_{3}}{z_{1}} \\
&=\frac{z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}}{z_{1}}=\frac{\sum z_{2}}{z_{1}} n \\
& \text { and } \\
& z_{C_{A}}=z_{1}+z_{3}+\frac{z_{1} z_{3}}{z_{2}} \\
&=\frac{z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{3}}{z_{2}}=\frac{\sum z_{1} z_{2}}{z_{2}} \backsim
\end{aligned}
$$

Notes.
if $z_{1}=z_{2}=\dot{z}_{3}=R \Omega$ then

$$
Z_{A B}=R+R+\frac{R^{L}}{R}=3 R
$$

m $\dot{z}_{B C}=3 R$ and $Z_{C A}=3 R$.
$\cdots I_{\text {grad }}^{\infty} Z_{\Delta}=3 Z_{Y}, Z_{Y}=\frac{Z_{A}}{3}$

造里
b) Dilta to ster Niw

$$
\begin{aligned}
& z_{1}=\frac{z_{A B} \cdot z_{C A}}{z_{A B} \cdot z_{B C}+z_{C A}}=\frac{z_{A B} \cdot z_{C A}}{\sum z_{A B}} \\
& z_{2}=\frac{z_{A B} z_{B C}}{z_{A B}+z_{B C}+z_{C A}}=\frac{z_{A B} \cdot z_{B C}}{\sum z_{A B}} \\
& z_{3}=\frac{z_{C A} \cdot z_{B C}}{z_{A B}+z_{B C}+z_{C A}}=\frac{z_{B C} \cdot z_{C A}}{\sum_{z_{B O}}}
\end{aligned}
$$

Notes if $z_{A B}=z_{B C}=z_{A A}=R \Omega$. then $z_{1}=\frac{[R \cdot R]}{3 \ell}=R / 3 . \Omega$ $\mu z_{2}=F / 3 \Omega$ and $z_{3}=\left.R\right|_{3} n$
\therefore Ingaral $Z_{\psi}=\frac{Z_{4}}{3} \Rightarrow Z_{Y}=\frac{Z_{A}}{3} \Omega$ (14) $z_{4}=3 z_{y}$

Exampli::
(1) Gimen

Ennoot it cquivident

Sadic

ods:

$$
\therefore z_{z}=? z_{y}=-z_{z / 3}
$$

gin $\quad \dot{z}_{y}=9 / 3=3 \Omega=z_{1}=z_{2}=23$.
 quinalint strestu..

Natif \quad 少 $\quad \frac{z_{1}}{\text { ANII }}-\operatorname{implederue}\left(z_{1}\right) \cdot R$
(2). $\left.\begin{array}{c}z_{N}^{2} \\ \text { twI }\end{array}\right] \quad$ adinitame $Y_{1}=\frac{1}{Z_{1}} V$

$$
\frac{1}{z_{p^{+}}}=\frac{1}{z_{1}}+\frac{1}{z_{2}}<\text {.npedance. }
$$

$$
\Rightarrow \frac{1}{Y_{y}=Y_{1}+Y_{2}}
$$

Snugren $z_{1}=z_{2}=z_{3}=4 \Omega=z_{y}$

$$
\text { N.t. } z_{y}=\frac{z_{\Delta}}{3} \Rightarrow z_{\Delta}=33 Y
$$

(3) $z_{a}^{z_{1}} z_{a b}=z_{\text {al }}=z_{1}+z_{2} \Omega$

$$
z_{4}=3(4)=12 \pi
$$

$$
\begin{aligned}
\Rightarrow & \frac{1}{Y_{a b}}=\frac{1}{Y_{c c}}=\frac{1}{Y_{1}}+\frac{1}{Y_{2}} \\
& \quad \frac{1}{Y_{a b}}=\frac{Y_{1}+Y_{2}}{Y_{i} Y_{2}} \\
\Rightarrow & Y_{a b}=Y_{c a}=\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}}
\end{aligned}
$$

-proff

Guuralent impedance curon termain $C-A$ with teomnal ' B ' in opin.

$$
\left.z_{1}+z_{3}=z_{C A}\right) \cdot\left(z_{A B}+z_{B C}\right)
$$

$$
z_{1}+z_{2}=\frac{z_{C A}\left(z_{A B}+z_{B C}\right)}{z_{A B}+z_{B C}+z_{C A}}
$$

$$
\begin{align*}
& \frac{Q_{N}(1)-g^{\prime}(2)}{z_{1}+z_{2}-z_{2}-z_{3}}=\left\{\frac{z_{A B}\left(z_{B C}+z_{C A}\right)}{z_{A B}+z_{B C}+z_{C A}}\right\}-\left\{\frac{z_{C A}\left(z_{A B}+z_{B C}\right)}{z_{A B}+z_{B C}+z_{A A}}\right\} \tag{1}\\
& =\frac{Z_{A B}\left(Z_{B C}+Z_{C A}\right)-Z_{B C}\left(Z_{A B}+Z_{B A}\right)}{Z_{A B}+Z_{B C}+Z_{C A}} \\
& =\frac{Z_{A A} A_{B C}+Z_{A B} L_{A A}-Z_{B C} Z_{A B}-Z_{B C} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}} \\
& z_{1}-z_{3}=\frac{Z_{A B} 2 C_{A}-Z_{B C} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}} \tag{2}
\end{align*}
$$

Leqovalent inpectance asoun tempinal's $B-C$ with fermall A '
in opon.

$$
\begin{aligned}
& \left.z_{2}+z_{3}=z_{B C} \|\left(z_{A B}+z_{A A}\right) \quad \quad z_{B=0}\right\}_{\substack{ \\
L_{n}}}^{z_{3}}=z_{1+z_{3}} \\
& z_{2}+z_{3}=\frac{z_{B C}\left(z_{A B}+z_{C A}\right)}{z_{A B}+Z_{B C}+z_{C A}}
\end{aligned}
$$

Equralent impedance accon tamnali $A-B$ with " \dot{G}-open

$$
\begin{aligned}
& z_{1}+z_{2}=z_{A B} \|\left(z_{B C}+z_{C A}\right) \\
& z_{1}+z_{2}=\frac{z_{A B}\left(z_{B C}+z_{A A}\right)}{z_{A B}+z_{B C}+z_{C A}}
\end{aligned}
$$

$$
\begin{aligned}
& \delta Z_{1}=\frac{\$ Z_{A B} z_{C A}}{Z_{A B} z_{B C}+z_{A B} z_{C A}+z_{B C} Z_{C A}} \\
& \therefore z_{1}=\frac{Z_{n-3} 2_{n}}{\sum_{2+8}}
\end{aligned}
$$

Wi= wecon Simplify

$$
\frac{z_{2}=\frac{z_{A B} z_{B C}}{z_{A B}} \text { and }}{z_{3}=\frac{z_{B C} z_{C A}}{\sum z_{A B}}}
$$

proff 1 to $\frac{A \text { nho }}{2}$

\Rightarrow Equarant admitfence biew $A B$ with B shooted

$$
\begin{aligned}
y_{1} \|\left(y_{2}+y_{3}\right) & =Y_{A B}+Y_{C A} \\
-\frac{y_{1}\left(y_{2}+y_{3}\right)}{y_{1}+y_{2}+y_{3}} & =Y_{A B}+Y_{A A}
\end{aligned}
$$

\rightarrow quiveuntadmittance bluw $B C$ with C shoted to A.

$$
\frac{y_{2}\left(y_{1}+y_{3}\right)}{y_{2}+y_{1}+y_{3}}=y_{A B}+y_{B C} \rightarrow(2)
$$

equivalent admittance blw $C A$ with A chorted to B.

$$
\begin{align*}
& \text { 姲 } \\
& \text { A } \\
& \left(y_{1}+y_{2}\right) \| y_{3}=y_{B C}+y_{C A} \\
& \frac{y_{3}\left(y_{1}+y_{2}\right)}{y_{1}+y_{2}+y_{3}}=y_{B C}+y_{2 A}<(3) \tag{3}\\
& \text { Q (1) - }-q^{2} \text { (2) } \\
& \therefore \frac{y_{1} x_{2}+y_{1} y_{3}-y_{2} y_{1}-y_{2} y_{3}}{y_{1}+y_{2}+y_{3}}=\varphi_{n_{0}}+\psi_{n} y_{A A s}+y_{B C} \\
& \frac{y_{1} y_{3}-y_{2} y_{3}}{y_{1}+y_{2}+y_{3}}=\varphi_{C A}-y_{B C} \leftarrow \Theta \\
& q^{4} \text { (8) }+(4) \\
& \begin{array}{l}
\text { eq (3) }+(4) \\
y_{1} y_{3}+y_{2} y_{3}+y_{1} y_{3}-y_{2} y_{3} \\
y_{1}+y_{2}+y_{3}
\end{array}=2 y_{24} .
\end{align*}
$$

$$
\begin{aligned}
& \frac{1}{z_{C A}}=\frac{z_{2}}{z_{2} z_{3}+z_{1} z_{3}+z_{1} z_{2}} \\
& z_{C A}=\frac{z_{2} z_{3}+z_{1} z_{3}+z_{1} z_{2}}{z_{2}}=\frac{\sum z_{1} z_{2}}{z_{2}} n
\end{aligned}
$$

Ny. we con solve

$$
z_{A B}=\frac{\sum z_{1} z_{2}}{z_{3}} n
$$

and

$$
z_{B C}=\frac{\sum z_{1} z_{2}}{z_{1}} n
$$

- 8) Find the eqoratent Fesintance acrentie terminain $A B$ of alw shown in tig.

Solu':

$$
\begin{aligned}
& \left.\begin{array}{l}
z_{1}=\frac{3 \times 6}{6+3+9}=1 ル \\
z_{2}=\frac{3 \times 4}{18}=1.5 \mathrm{u}
\end{array}\right\} \begin{array}{l}
z_{a}=\frac{5 \times 15}{30}=2.5 \sim \\
(5+5+10)
\end{array} \\
& z_{3}=\frac{6 \times 9}{18}=3 n \cdots\left\{\begin{array}{l}
z_{b}=\frac{15 \times 10}{30}=5 n \\
z_{c}=\frac{5 \times 10}{30}=5 / 3 n .
\end{array}\right.
\end{aligned}
$$

(Q) In the whe stown biloue(fiya.) Find the voltey nuce to be applid anom $A B$. Soteat the Eiment drawn bo the crucit is iA. $\quad V_{A B}=1401782$ voif's
(Q3) Find the equaceont. dite Nlw of the Now stoinn in ty

Solu:-

 Find the youracent ressmance arom eo the digratlypponte Lomuns.

$$
=\rho_{20}-\frac{100}{-5}=\left(-20+\hat{j}_{20}\right) n:\left\{\begin{array}{l}
z_{1}=(20-920) n \\
z_{2}=(10+30) n \quad \text { n). Using } Y-\Delta \text { trantormation frod the Eiment thiough the }
\end{array}\right.
$$

Solu:-

$$
\begin{aligned}
& z_{a}=j_{10}+j_{10}+\frac{j_{10 \times} j_{10}}{5} \quad\left(z_{1}=(00-j 200) n\right. \\
& z_{b}=j 10+5+\frac{850}{30}=(10+310) \Omega \quad z_{5}=(10+100) n \\
& Z_{C}=310+5+\frac{J_{50}}{j_{10}}=(10+310) \Omega \\
& z_{A B}=z_{\|} \|_{a}=\frac{z_{1} z_{a} a^{\circ}}{z_{1}+z_{a}}-a=\frac{(-20+20)(20-120)}{-20+j 20+20-120}=\frac{(1)}{0} \\
& \frac{1}{z_{A B}}=\frac{1}{z_{1}}+\frac{1}{z_{2}} \Rightarrow z_{A B}=20 \Omega \\
& z_{c A}=z_{2}| | z_{b}=\frac{z_{2} \ddot{z}_{b}}{z_{2}+z_{b}}=\frac{(110+j 10)(10+j 10)}{(10+j .10)+(10+j 0)} \\
& \text { Serec } z_{b}=2 i \quad=(5+j 5) n \text {. }
\end{aligned}
$$

the Same cument I $=$?

$$
\begin{aligned}
& I=\frac{180}{4+48 \| 24+10}=\frac{6 A}{} \\
& \Rightarrow 180=4 i+34 x^{1} \\
& 180-4(6) \leq 3481 \\
& \Rightarrow \frac{a t=\frac{180-24}{34}}{m} \\
& 180-24-24 a-6 a=0 \\
& \text { DuI }=\frac{180}{}-8
\end{aligned}
$$

(2) $=1220.96 / 24=4 \mathrm{~A}$
the Current plow thangh 10 i quinator

$$
T_{10 n}=4 \mathrm{~A}
$$

(8) using stace ditta tranotemntion find the [unent the the tranth Commated ble BD.

Sold.

the Same Comint $I=\frac{10}{5 / 3+(25) .1 .105)+2}=0.86629$

$$
\begin{aligned}
& 10-\frac{5}{3}(I)-V_{S C}-2(I)=0 \\
& V_{S C}=10-\frac{5}{3}(0.86629)-2(0.8629) \\
& V_{S C}=6.8231 \mathrm{Lolt}+
\end{aligned}
$$

$$
\begin{aligned}
& 0.5933(2.5)-5(0.27289)-V_{B D}=0 \\
& \because \\
& V_{B D}=0.1183 / v o l f^{\prime} n \\
& \dot{A}=\frac{V_{B D}}{15 n}=\frac{0.183}{15} \\
& I=7.886 \mathrm{~mA}=0.0071 \text { Amperh. }
\end{aligned}
$$

(8) Find the equiralent Resintance acron $A B$ tote dt shown.

$$
R_{A B}=3.22 \mathrm{~g} \Omega
$$

(9) Uning stry/dila. frampomation, diternine the eusiztance blw M and N of Now showninfig

Solu:-

$6+4+5=15 u$.

$$
\begin{aligned}
& R_{M N}=1+0.851+(0.851) \|(8.574) \\
& R_{M N}=2.1937 \Omega
\end{aligned}
$$

(8) obtein expunions for on cqualates st of stax Connated mpedanes to quplane asat of dilta comutict impidances. (5m) Jjs 2ole.
(8) Find the equivalent resointence at $A B$ using $Y-\Delta$ truastometi -on tahnique for the Crkut shain infy

(SN) Jon 204

Solv:-

Shai:

Solu:-

$I=1$ Amprin
the total Curnt Supplied by the Sare ip $\mathcal{1 1}^{\prime 1}$ Arparets
Q) Find the voltoge to be appled Quan $A B$ in Ordertodraive.

$$
\text { 7. } 466+i n .
$$ the [oment of $10 A$ into the Crimit using stari- Dill $a \ll$

$$
I=\frac{V}{R} \Rightarrow V=I \cdot R
$$ co... tromifomation.

(6n) $5 / 32013$

$$
\begin{aligned}
& \left.\left.R=10[1.2+(12.444))^{72.466+} 18.667\right)+3033\right]
\end{aligned}
$$

$$
=10 \times 11.9967
$$

$$
V=119.967 \simeq 120 \text { voltn }
$$

(8) Ditermine Cument I_{1} in the nlu shewnin tig. using star-dilta Convaroion.
(6m)

$$
I_{1}=\frac{V_{2 y}}{(1.2+3)}=\frac{33.6}{4.2}=8 \mathrm{~A} .
$$

Solur

$$
\begin{aligned}
& I=\frac{V}{R}=\frac{60}{1.2+(2.4) \| 4.2)}=\frac{60}{20272}=22 \mathrm{~A} \\
& 60-26.4-V_{x y}=0 \Rightarrow x_{x y}=33.6
\end{aligned}
$$

MISSION

Provide quality and contemporary education, in the domain of Electronics and communication and related fields, which enable collaborative ventures with industries and research organizations. Emphasis laid on creating innovative teaching-learning processes that motivate self-iearning. -
by imparting quality education embedded with discipline \& national honor. VISION
To create a rich intellectual potential implanted with muttidiveiplinary knowledge human values and professional ethics among the aspirant of becoming Engineers and technologies, so as to unlock their imagination and discover their potential. .-

OBJECTIVES

1. To impart good technical knowledge to the students.
2. To produce Excellent Engineers in Electronics \& Communication fields.
3. To fulfil the need of the -ociety in the various fields related to Electronics and Communication enspree:ing
4. To bring post-gra : : :s program in the diverse field of electronics and communication E : ineering . : .
5. To upgrade the facilities: $\mathrm{Bn} \because$-ch \& Development Centre of the department with the use of modern ant
6. To organize traimm: programs / workshops for upgrading staff performance.

- 7. To establish ins - institure Interaction.

8. To publish techas. ' rapers in National / International journals and conferences.

GOALS (Short Term) :

1. Modernizing the Laboratories with new software \& state-of-the art hardware in tune with the latest technological developments.
2. To obtain Quality certification from an agency: of reputed.
3. Teaching Aids: LCD Projector, Srnart Boards.
4. Promoting Faculty Development Programmes.
5. Conducting the need based training programs for Faculty \& Students.
6. To improve the pass percentage $2-5 \%$ compared to previous year.

GOALS (Long Term) :

1. To start additional P.G. Programmes in Electonic and Communication engineering discipline.
To enter into understanding with globally renowned universities for special programmes in emerging technologies.
programmes in emerging technologies.
2. Promoting Industry - Institute interaction through projects and R \& D work.
roper- Save truntomation and Sore stuffing.

1

3. For ideal Saervin.

5.

- a) Find the value of I fforth ibt shown blew

(大) $2 A$ b) $4 A \quad c>6 A$ (d. Nons. Viobation of kxl.
Solw 0 t. voltage arrontle cul tle pratall branches

Notep.
(1) 2n the above dt 20Ω rcointorn can be ni plecied wht Calculating cittor hood carent (ar) Load voltage.
(i) Irthe abour lilcuit 20 r rosintancescannot be neff whibe caimlathy Soure Currint (a) pours.
Scampl63:-
Example:-

$$
x_{L}=1060 \text { itn. }
$$

$$
I_{s}=15 A \quad P_{d d}=
$$

asparthe att cquiralint neplat $R=20 \Omega$.

$$
V_{L}=2 \times 5810 V_{014}
$$

and

$$
P_{\text {dener }}=M I=20 \times 3=60 \text { walt }
$$

$$
I_{L}=2 A
$$

$$
I=\frac{20}{10}=2 A=
$$

$$
I_{L}=2 A
$$

$$
I_{s}=2 A
$$

$$
\begin{aligned}
& V_{L}=10 \mathrm{voH} \\
& P_{\text {det }}=20 \times 2=40 \mathrm{~W}
\end{aligned}
$$

$$
+P_{\text {del }}=I \times V=2 \times 20=40 \text { Watts }
$$

Note1:- in the above it Cument surce con be ngguted, wilk Ealualating citt hoad cerment (©) Ladd voltage.
2 . Inthe above cot Curint source cannot beinegleetd whice Calcuating citter voltge sarce umnt (8) pown.

I. (1):

Expoplel

(a), 20 A (5) 10 A
(c) 30α
kcl fipolation.

Ex3.

$$
\begin{aligned}
& \because V_{a_{b}}=V_{S}-40 \quad I_{2}=10 \mathrm{~A} \\
& V_{a b}=10 \times 5=50 \mathrm{~V} . \\
& \therefore V_{S}=V_{a b}+40=50+40=90 V_{0} \\
& \therefore \\
& V_{S}=I \times V_{S}=20 \times 90=1800 \text { alth }
\end{aligned}
$$

\therefore if niflet $20 n^{\cdots} \cdots \cdots$

Noter-(1). In the above Cirwit $2 u$ Load voltage.
Caluating either Load. Cumnt's (0) Laad
(2). In the above Gruit 2 ir resintaru connat be neputed, while Caluelating eitter Sovm voltaje (a) Sarre pourc.
εx^{\prime}

$$
\begin{aligned}
V_{a b} & =V_{c}+10 \\
V_{a b} & =5 \times 10=50 \mathrm{vd} / \mathrm{h} \\
V_{s} & =U_{a b}-10 \\
& =50-10=40 \mathrm{volh}
\end{aligned}
$$

$$
V_{s}=40 \mathrm{volf} \mathrm{f}
$$

replet love some.

$$
P_{S}=V_{S} \dot{I}=40 \times 20=\frac{800 \text { wation }}{}
$$

Source Transtomation:-
(6) Angeraial

Note1. In the above Crucuit voltage Sarce ion be nefulued. while calulating iffir haod cunnt eo Locuctrodige.
Noter Intle abovects voltoge Source comot be neglated while celvilaty the some voltge of sore fowr.

B) Rediw the fig shewn into a pratical voltege Source auren the fermal $A B$.

Stegl. identity the Trivival clemenfin 4 funore if any.

Solui:

(8) Redau a Nlw in to an equvalent voltyge some curon. fommalo $\neq B$.

Soly: Sly: notrvial lements prosint.
Step2:- Sinceale are ibeal soures: Source Tanfomats
\cdots Comnot berrapticed.

PR) For the now shown infin. Find the potential difference P9) For the she shown in M and N using source transformation (iv)
MM
is

Solve step iduntly the trivial deme

clem m: Ester

$$
\begin{gathered}
\frac{k c l @ m}{3}-1+2+\frac{\left(e_{m+10-0)}^{2}=0\right.}{3-15-0)}=0 \\
\Rightarrow 3^{-1}\left(v_{m-1}+1=0\right. \\
+1=0 \\
\Rightarrow v_{m}=-1.20001+h
\end{gathered}
$$

\therefore Fundamentain .

 branch Lament.

BUL

$$
\begin{aligned}
& V-V_{R_{1}}-V_{R_{2}}=0 \\
& V-I R_{1}-I R_{2}=0 \Rightarrow V=I R_{1}+\Sigma R_{2} \quad v_{0} l_{h_{2}}:
\end{aligned}
$$

* Loop Currentio ane I_{1} and I_{2}.
' R_{2} ' in Compon for both the roop',

kUI' $1^{i}+$ Loop

$$
\begin{aligned}
& \text { vedefer } V-I_{1} R_{1}-\left(I_{1}-I_{2}\right) R_{2}=0 \\
& V=I_{1} R_{1}+\left(\Phi_{1}-I_{2}\right) \cdot R_{2}=0 . \\
& \therefore \dot{V}=I_{i} R_{i}+\Sigma_{1} R_{2}-I_{2} R_{2} e_{0} \\
& V=\left(R_{1}+R_{2}\right) I_{1}-I_{2} R_{2} \div()
\end{aligned}
$$

suond loop P.

$$
\begin{align*}
& -\left(I_{2}-I_{1}\right) R_{2} I_{2} R_{3}-I_{2} R_{4}=0 \\
& -I_{2} R_{2}+I_{1} R_{2}-I_{2} R_{3}-I_{2} R_{4}=0 \\
& 0=I_{1} R_{2}-\left[R_{2}+R_{3}+R_{4}\right] I_{2}=0 \tag{2}
\end{align*}
$$

tow epe toroo un trownin.
N(102

kul Log

$$
\begin{gathered}
V-\left(I_{1}-I_{3}\right) R_{2}-R_{9}\left(I_{1}-I_{2}\right)=0 \\
V=I_{1} \bar{R}_{2}-I_{3} R_{2}+R_{4} I_{1}-I_{2} R_{4} \\
\therefore V=I_{1}\left(R_{2}+R_{4}\right)-R_{4} I_{2}-R_{2} I_{3}<\text { (1) }
\end{gathered}
$$

Loog 2

Log3

$$
\begin{align*}
& \quad-\left(I_{2}-I_{1}\right) R_{4}-\left[I_{2}-I_{3}\right] R_{3}-I_{2} R_{5}=0 \\
& -I_{2} R_{4}+I_{1} R_{4}-I_{2} R_{3}+I_{3} R_{3}-I_{2} R_{5}=0 \\
& I_{1} R_{4}-I_{2}\left[R_{3}+R_{4}+R_{5}\right)+R_{3} I_{3}=0< \tag{2}\\
& -I_{3} R_{1}-R_{3}\left(I_{3}-I_{2}\right)-R_{2}\left(I_{3}-I_{1}\right)=0 \\
& -I_{3} R_{1}-R_{3} I_{3}+I_{2} R_{3}-R_{2} I_{3}+R_{2} I_{1}=0
\end{align*}
$$

$$
\begin{equation*}
I_{1} R_{2}+I_{2} R_{3}-\left(R_{1}+R_{2}+R_{3}\right) I_{3}=0 . \tag{3}
\end{equation*}
$$

such that the. Curnt though sul covintor in E_{2} wing hoop plalyen. (6m)

solu:- given. $I_{5 n}=0$.
KUL $1^{\text {th lloop. }}$

$$
\left\lvert\, \begin{array}{ll}
& \cdots \\
\therefore & \ddots \\
\therefore & \cdots
\end{array}\right.
$$

$$
10-3 I_{1}-7\left(I_{1}-I_{2}\right)=0 .
$$

$\log 3-I_{3} 6-4\left(I_{3}-A_{2}\right)-I_{3} 6-E_{2}=0$

$$
\begin{aligned}
&-10 I_{3}=E_{2} \\
& \therefore E_{2}=-10(-1.75)=-10 I_{3} \\
& \therefore E_{2} .17 .501 .15
\end{aligned}
$$

Log 2

$$
10=3 \varepsilon_{1}+7 I_{1}-7 I_{2}
$$

$$
\text { Esee } 10 I_{1}-7 \dot{\Phi}_{2}=10
$$

$$
\operatorname{gin} I_{2}=I_{5 n}=O A
$$

$$
\therefore 10 \cdot \pi_{1}=10 \Rightarrow x_{1}=1 \mathrm{~A}
$$

$$
\begin{aligned}
& =7\left(0-I_{1}\right)-0-4\left(I_{3}-I_{2}\right)=0 \\
& I_{1}=1 \mathrm{~A} \\
& -7(-1)-4\left(-I_{3}\right)=0 \\
& +7=-4 I_{3} \\
& I 3=7 / 4=1.75 \mathrm{~A} \\
& =1 \mathrm{~A}=-175 \mathrm{~A}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& I_{1} \sum_{i}^{1 a}\left(S_{2}\right. \\
& I=I_{1}+I_{2} \\
& \rightarrow \\
& \left.i_{1}\right) \sum_{1}^{I} R\left[I_{2} \quad \begin{array}{ll}
I=I_{1}-I_{2}
\end{array}\right. \\
& \rightarrow \\
& \Sigma_{1} \int_{\infty} \sum_{\varepsilon_{2}}^{\varepsilon_{2}} \frac{I=-I_{1}-I_{2}}{\therefore=-\left(I_{1}+I_{2}\right)} \\
& \rightarrow \\
& I_{1} \uparrow \sum_{2} I_{2} \quad \frac{1}{I=-I_{1}-I_{2}}
\end{aligned}
$$

(d)

2nd mutlod ung VDR

$$
I_{1}=\frac{10}{3+7}=1 \mathrm{~A}
$$

$\therefore \mathrm{KUL}(1609) \cdots(7)-0+4\left(I_{2}\right)=0$

$$
I_{2}=H_{4}=-107544
$$

tuchore 2

$$
\begin{aligned}
& E_{2}+6(-1.2 r)+4(1.2 r)=0 \\
& E_{2}=6 \times 1 \cdot 2+4 \times 1.25=17.5 \mathrm{col} 1 \mathrm{~s}
\end{aligned}
$$

Note:-

kVe

$\rightarrow_{v_{a}} \sum_{1+I=?}^{\lambda^{+}} \quad$ a $V_{a}+I 4=0 \Rightarrow 1=\frac{-V_{a}}{R}$
(0) $I=\frac{0-V_{a}}{R}=\frac{-V_{a}}{R}$ Arpas

$$
\begin{equation*}
\frac{4}{7} I_{2}+\frac{3}{7} I_{3}=1 \tag{1}
\end{equation*}
$$

Solving cpe (a) and cq (b)
solu:
Loop :: $\quad I_{1}=1 A \nsim 0$
Loog $2: \cdot$

$$
\begin{align*}
& -2\left(I_{2}-I_{1}\right)-3 I_{2}-4\left(I_{2}-I_{3}\right)=0 \\
& -2 I_{2}+2 I_{1}-3 I_{2}-4 I_{2}+4 I_{3}=0 . \tag{10~V}\\
& 2 I_{1}-9 I_{2}+4 I_{3}=0<(2) \tag{2}
\end{align*}
$$

$$
-9 I_{2}+4 I_{3}=-2 I_{1}
$$

Loop3 $\}$
Symmo h

$$
\begin{aligned}
& P_{\substack{\text { derny } \\
\text { riov) }}}=10 \times I=V \times I \\
& =10=12^{2}
\end{aligned}
$$

Node volteye method C.

$$
I_{1}=1
$$

$$
\begin{align*}
& I_{3}-I_{1}=\frac{4}{7}\left(I_{3}-I_{2}\right) \tag{@}\\
& I_{3}-I_{1}-\frac{4}{7} I_{3}+\frac{4}{7} I_{2}=0 \\
& \frac{4}{7} I_{2}+\left(1-\frac{4}{7}\right) I_{3}=I_{1}
\end{align*}
$$

6) Node voltage Mathode-

Kul@ nodea

Quedeg ($\left.\begin{array}{c}\left.v_{a}\right\rangle_{a} v_{c} v_{c}\end{array}\right)$

$$
\frac{v_{a}-v_{1}}{R_{1}}+\frac{v_{a}-v_{b}}{R_{5}}+\frac{v_{a}-V_{4}-v_{c}}{R_{u}}=0
$$

(andeb $\left(\begin{array}{l}v_{1} \\ v_{b}>v_{a} \\ v_{0}>v_{c}\end{array}\right)$

$$
\begin{equation*}
\frac{\dot{v}_{b-}-V_{2}}{R_{9}}+\frac{V_{b}-V_{a}}{R_{5}}+\frac{V_{b}-V_{c}}{R_{6}}=0 \tag{2}
\end{equation*}
$$

(a Nodec $\binom{v_{i}>v_{a}}{v_{c}>v_{b}}$

$$
\begin{equation*}
\frac{V_{c}+V_{4}-V_{a}}{R_{4}}+\frac{V_{c}-V_{b}}{R_{6}}+\frac{V_{c}-V_{3}}{R_{3}}=0 \tag{3}
\end{equation*}
$$

(2) abocthd
 Crbwit shown using the Nodal analysin.

solu:- wist
grad (T) \quad Y $=100 \mathrm{v}<$ (1)
solut

$$
\begin{aligned}
& v_{2}=5 v \leftarrow(1) \\
& v_{1}-v_{3}=5 v \leftarrow(2)
\end{aligned}
$$

©inode (4)

$$
\begin{aligned}
& \text { () } \begin{array}{l}
V_{4} \\
2
\end{array} \frac{V_{u}-y_{2}}{5}-2=0 \\
& \Rightarrow \frac{V_{u}-y_{2}}{5}+\frac{V_{4}}{2}=2 \\
& 20=2 u_{4}-2 v_{2}+5 V_{4} \\
& \Rightarrow V_{4}=4.285
\end{aligned}
$$

node3

$$
\begin{aligned}
& 5+\frac{V_{3}-V_{2}}{20}+\frac{V_{3}-V_{1}}{25}+\frac{V_{3}}{4}=0 . \\
& \\
& P_{\text {un }}=\frac{V_{3}^{2}}{R}=\frac{V_{3}}{R}=\frac{90.58)}{4}=10.5 .96 \text { watl }^{\prime}
\end{aligned}
$$

(a) Coy-mode

$$
\begin{aligned}
& \frac{v_{1}-v_{2}}{10}+\frac{v_{3}}{2}+2=0 \\
& 0.1 v_{1}-0.0 v_{2}+0.5 v_{3}+2=0 \\
& y_{2}=5 . v_{0} / \ln \quad \& \quad v_{2}=5 \operatorname{sid} \theta_{0} \\
& v_{1}=1.66 u 0.110 \quad y_{3}=-3.33 v_{0} / l_{n}
\end{aligned}
$$

(8) Using mest anclysen ditermne the value of V_{2} which

Came tiv voltage cuionthe $2 c \Omega$ rusinto to
kuclovpe be. zoro
kok kogep
Solu:-

$$
\begin{aligned}
& \quad \text { given } V_{20 n}=0 \\
& \Rightarrow V_{20 n}=V_{x}=0 \text { voti?. } \\
& 2 \ldots I_{x}=I_{3}-I_{4} \\
& \text { and } V_{x}=I_{1} \times 20 . \\
& \text { gan } V_{x}=0 .
\end{aligned}
$$

$$
0=\left[I_{2,3}-I_{u}\right] \cdot 20
$$

$$
\Rightarrow \quad I_{3}=I_{4} \text { Anperis. }
$$

trontry $\begin{aligned} & I_{1}=2 \mathrm{~A} \leftarrow 0 \\ & I_{2}=3 \mathrm{~A} \leftarrow 0\end{aligned}$
Loop $3 \cdots 24-10\left(I_{3}-E_{1}\right)-\hat{y}_{x}^{0}=0$.

$$
\begin{align*}
24 & =10\left(I_{3}-I_{1}\right) \\
I_{1} & =2 A \\
\therefore 24 & =10 I_{3}-10(2) \tag{3}\\
24 & +20=10 I_{3} \Rightarrow 10 I_{3}=44
\end{align*} \Rightarrow I_{3}=4.4 \text { Arresio }
$$

(6). Find the powordelivoed by the un ovisintor intle cirluit Shown wing Nodal Aralys'm
@ b

$$
\begin{aligned}
& \frac{V_{b}}{20}-I_{2}-4=0 \Rightarrow \frac{V_{b}}{20}-I_{2}=4<(2) \\
& \frac{V_{c}}{4}-I_{1}+4=0 \Rightarrow \frac{V_{c}}{4}-I_{1}=-4
\end{aligned}
$$

(1) Find V_{a} by ned analysm:

$$
\left.\begin{array}{l}
0.04 v_{a}+I_{1}+I_{2}=5 \\
0.05 V_{b}-I_{2}=4 \tag{1}\\
0.25 v_{c}-I_{1}=-4
\end{array}\right\} \begin{aligned}
& V_{a}-V_{c}=100 \\
& v_{b}-V_{a}=60 \\
& v_{b}-v_{c}=160
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad V_{c}=V_{a}-100 \\
& V_{c}=79 \cdot 41176-100=-20.589 \text { v. th } \\
& P_{\text {un(uts })}=\frac{V_{c}^{2}}{4}=\frac{(-20.789)^{2}}{4}=105.99 \text { Watts }
\end{aligned}
$$

Solv

kelomery
wey

$$
\frac{v_{1}-v_{2}}{0.5}+\frac{v_{1}}{0.333}+5
$$

@node 2

$$
\frac{v_{2}-y_{i}}{0.5}+\frac{v_{2}-5}{0.25}+\frac{v_{2}}{1}-4 v_{a}=0
$$

$$
V_{a}=79.4817 \text { vornt, } I_{1}=-+1 u \text { Amprin }
$$

$$
V_{a}=I(0.25)
$$

$$
z_{2}=2.9705\left|8 n_{n} p r^{\prime}\right|
$$

$$
v_{a}=\left(\frac{v_{1}+5-v_{2}}{0-25}\right) \times 04
$$

$$
v_{a}=\dot{v}_{1}-v_{2}+5 v^{v_{0}}
$$

$$
\begin{gathered}
2 v_{1}-2 v_{2}+3 \bar{v}_{1}+5+4 \bar{v}_{1}+20-4 v_{2}=0 \\
9 v_{1}-6 v_{2}=-25
\end{gathered}
$$

${ }^{\text {ae }}$

$$
\therefore\left(v_{2}-v_{1}\right) v_{a}+v_{2}+\left[v_{2}-5-v_{1}\right] 4=0 .
$$

$$
2 v_{2}-2 v_{1}+4 v_{2}-20+v_{2}-4\left(v_{1}-v_{2}+5\right)=0
$$

$$
\left(2 v_{2}-2 v_{1}+4 v_{2}-20+y_{2}-4 v_{1}+\left(v_{2}-20=0\right.\right.
$$

$$
\begin{equation*}
-6 y_{1}+11 y_{2}-40=0 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& 2 v_{2}-2 v_{1}-4\left[v_{1}-v_{2}+5\right]+v_{2}+4 v_{2}-20-4 v_{i} \\
& \left(-10 v_{1}+11 v_{2}=40\right]<20+v_{2}+4 v_{2}-20-4 v_{1}=c \tag{2}\\
& \therefore v_{1}=-0.89720114 \\
& V_{2}=2.8205 v 01 v_{1} \\
& =-0.897-2.805+5 \\
& V_{a}=v_{1}-v_{2}+5 \\
& \left.V_{a}=1.2821\right]
\end{align*}
$$

MISSION
Provide quality and contemporary education, in the domain of Electronics and communication and related fields, which enable collaborative ventures with industries and research organizations. Emphasis laid on creating innovative teaching-learning processes that motivate self-learning. by imparting quality education embedded with discipline \& national honor.

$$
\because \ldots, \quad \text { VISION }
$$

To create a rich intellectual potential implanted with multidisciplinary knowledge, human values and professional ethics among the aspirant of becoming Engineers and technologies, so as to unlock their imagination and discover their potential.

OBJECTIVES

1. To impart goof technical knowledge to the students.
2. To produce Excellent Engineers in Electronics \& Communication fields.
3. To fulfil the needs of the society in the various fields related to Electronics and. Communication engineering.
4. To bring post-graduate program in the diverse field of electronics and

5. To upgrade the facilities in Research \& Development Centre of the department with the use of modern aids.
6. To organize training programs / workshops for upgrading staff performance.
7. To establish Industry-Institure Interaction.
8. To publish technical papers in National / International journals and conferences.

GOALS (Short Term) :

1. Modernizing the Laboratories with new software \& state-of-the art hardware in tune with the latest technologicardevelopments.
2. To obtain Quality.certificatiọn from an agency of reputed.
3. Teaching Aids : LCD Projector, Smart. Boards. .
4. Promoting Faculty Development Programmes.
5. Conducting the need based training programs for Faculty \& Students.
6. To improve the pass percentage $2-5 \%$ compared to previous year. GOALS (Long Term) :
7. To start additional P.G. Programmes in Electonic and Communication engineering discipline.
8. To enter into understanding with globally renowned universities for special programmes in emerging technologies.
9. Promoting Industry - Institute interaction through projects and R \& D work.

\rightarrow Supaposition theorem.
\rightarrow Reciprocity tho om.
\rightarrow mill mans theorem.
To. apply any theorem, the network as to foll wi he fol towing . two proputics... .
T) Linositig:- An clement in said to be Liner if the excitation.
3) Bilaterally. The ruponse remains the same for the bots the polaris of the input dritation.
(1) Superposition theorem:- (SPTT)

Statement 5 - "In. Any linear bilateral reluct raving two (a)
 shitwork will begual to the aghinic sing report $-\infty$ dir to dat save ming ane of a tine
Note!- \rightarrow all the ideal voltage source are criminated from the New by shorting the source, all the ideal Current Sources are dimnated by opning the sources $(O C)$ and donot disturb the dependent sarre pronto in the neluo.

Exarple:-

I-total rinporse
Step). with f_{1} alove. $E_{2}=O V$ (shot att)

using broant Cuinent method

$$
\begin{aligned}
& I_{1}=I_{t_{1}} \cdot \frac{R_{2}}{\left(R_{2}+R_{3}\right)} \\
& \left.I_{1}=\left(\frac{R_{2}}{R_{2}+R_{3}}\right) \cdot\left(\frac{E_{1}}{R_{1}+\left(\frac{R_{3} L_{3}}{L_{1}+B_{4}}\right)}\right)\right] \text { Ampain }
\end{aligned}
$$

Step 2: with E_{2} alone $\left(E_{1}=0\right.$ r ab hastedt).

$$
R_{y x}=R_{2}+R_{1} \| R_{3}=R_{2}+\left(\frac{\vec{R}_{1} R_{3}}{R_{1}+R_{3}}\right) n
$$

using bronhturint uuthol

$$
\begin{aligned}
& I_{2}^{\prime}=I_{R_{2}}\left(\frac{R_{1}}{R_{1}+F_{3}^{\prime}}\right) \\
& I_{2}^{\prime}=\frac{E_{2}}{R_{4} a}\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \\
& I_{2}^{\prime}=\frac{E_{2}}{\left(R_{2}+\frac{R_{1} R_{3}}{R_{1}+R_{3}}\right)}\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \quad \text { Amproh... }
\end{aligned}
$$

$R_{2}=-I_{2}^{\prime}$
\Rightarrow Total rospome. $I=I_{1}+I_{2}$

$$
\Rightarrow I=I_{1}-I_{2}^{\prime} \text { Amparin. }
$$

Reciprocity thoomine.
In any hivar bilateral Network Consinting of only one Source, the ratio of the Exitation to muponse remains unchanged ewn after Interchenging their positions.
(d) In a single source nlw the position's of the Source and cuponpes con be interitionged.
Example:

E-Excitation souria/ ingut. I. rupore

$$
\frac{E}{I}=\text { Constent }\left(k_{1}\right)
$$

$\frac{k d 0 x}{} \quad \frac{V_{x}-E}{R_{1}}+\frac{V_{x}}{R_{3}}+\frac{V_{x}}{R_{2}+P_{4}}=0$.

$$
v_{x}\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{R_{2}+R_{4}}\right]=E / R_{1} .
$$

$$
\begin{aligned}
& \dot{V}_{y} C_{y}=\frac{-E}{\left(R_{2}+R_{4}\right)} \times \frac{1}{\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{R_{4}+R_{2}}\right]} \\
& I_{1}=\frac{-V_{4}}{R_{1}}=-\left[\frac{-E}{R_{1}\left(R_{2}+R_{4}\right) \cdot\left[\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{R_{2}+R_{4}}\right]}\right]
\end{aligned}
$$

$$
k_{1}=\frac{E}{I_{1}}=\left(R_{2}+R_{4}\right) R_{1}\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{f_{2}+R_{4}}\right)
$$

$c^{4}(6)=\cos$ (6
\therefore Quesproity theron in ventiged.
Q) Verity reciprocity theorme -

Solu:

$$
\mathcal{I}=\frac{v}{4} A=\text { rospome @ dy }
$$

$$
I=\frac{10}{4}=5 / 2=205 \text { Amprin }
$$

$\frac{I}{v}=\frac{205}{10}=25<(\omega)$.
intrinergethe ${ }^{1} \mid 1+0 / p o$

Page 41

$$
\begin{align*}
& I=\frac{10}{4}=205 \text { Ampan } \\
& \Rightarrow \frac{I}{k}=\frac{2.5}{10}=25 \mathrm{v} \tag{b}\\
& q^{u}(a)=g^{u}(b) \quad \therefore \begin{aligned}
& \text { recproing thormn } \\
& \text { rentred : }
\end{aligned} \\
& \text { eenfud: }
\end{align*}
$$

$$
\text { ole } E_{x}=9.284(21.804) \overline{k 011 h}
$$

Solu:

$$
\text { if } x=540^{\circ} A
$$

$\% \quad v_{x}<\left\|^{u n}\right\|$.
usmp BCM

$$
I_{x}=549^{\circ}\left[\frac{5+j 5}{(5+j 5)+(2-j 2)}\right]
$$

$$
=590^{\circ} \times 0.9284121 .8014
$$

$$
I_{x}=40642[117.8014 \text { Ampin }
$$

ration of of to ile

$$
\text { uny vPR } x_{y}=5\left(9 0 ^ { \circ } \left[\frac{-j_{2}}{\left.\left.(7+j 5)_{2}\right)\right]}\right.\right.
$$

$$
=5190^{\circ} \times 1003 x+1026
$$

$$
\begin{aligned}
& 0.2626(-1+3 \cdot 39 . \\
& =1306 l
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v_{x}=I_{x}\left[-g_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& V_{x}=5_{y},[5+j 5]=1313+\frac{-2351}{}=[5+35] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{V_{x}}{I}=\frac{9.284(21.8014}{5\left(90^{\circ}\right.} & =\frac{284218-u 2}{<-b} \\
\quad g^{\circ}(a)=c^{4}(b) & =1856(-68 \cdot 98
\end{aligned}
$$

\therefore sell querproiy theom in benter.

(d)
usingVDR $I=20$ uss $A<$ ite.

$$
Y_{x}=I_{y}+5 \text { woth }<0 / \mathrm{p}
$$

$$
I_{y}=20\left[45^{-1}\left[\frac{10}{10+5+3+j 8}\right]\right.
$$

$$
=20 \angle 4 s^{p} \times 0.5076 \angle-23096
$$

$$
I_{y}=10.1534(21.037 \text { Anpact) }
$$

$$
\begin{aligned}
& V_{x}=F y \times 5=67238 \\
& V_{1}=50^{\prime} 767210037 \text { vollh }
\end{aligned}
$$

$$
\left.\frac{V_{n}}{I}=\frac{50.767(210037}{20\left(45^{\circ}\right.}=20538 t-2.3 .963\right) \Omega
$$

$v_{x}=m_{x} \times 10$ vothn.

$$
\begin{aligned}
& \pi x=2045^{\circ}\left[\frac{5}{5+10+3+j 8}\right] \\
& \therefore=2045^{5} \times 0.2538(-23.962
\end{aligned}
$$

$$
I_{x}=404885.0767(21.037 \text { Ampain }
$$

$$
V_{x}=10 \delta_{x}=10 \times 5.0767121 .037
$$

$$
\frac{v_{x}}{I_{0}}=2.538(-23.963<6) \quad q^{2} 0 .=q^{\circ}(b) \text { "Heupmith }
$$

$\xrightarrow{\text { Millinarin theorem (Parallel generator theorem) }}$
Statement f-
when er a set of practical voltage sources working in parallel fusing in to a Common load; A common terminal voltage of the combination in given by

$$
V=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}+\cdots E_{n} Y_{n}}{\left[Y_{1}+Y_{2}+Y_{3}+\cdots Y_{n}+Y_{L}\right]}
$$

kel
Qa. $I_{1}+I_{2}+I_{3}+\cdots+I_{n}=I_{L}$

$$
\left(\frac{E_{1}-v}{z_{1}}\right)+\left(\frac{E_{2}-v}{z_{2}}\right)+\left(\frac{E_{3}-v}{z_{3}}\right)+\cdots+\left(\frac{E_{n}-v}{z_{n}}\right)=\frac{v}{z_{L}}
$$

$$
n=V Y_{L} .
$$

$$
E_{1} y_{1}+E_{2} y_{2}+E_{3} y_{3}+\cdots+E_{n} y_{n}=v\left[y_{1}+y_{2}+y_{3}+\cdots+y_{n}+y_{2}\right]
$$

$$
V_{L}=\frac{E_{1} y_{1}+E_{2} y_{2}+\cdots+E_{n} y_{n}}{\left[y_{1}+y_{2}+y_{3}+\cdots+y_{n}+y_{L}\right]} \text { volts }
$$

$$
\begin{aligned}
E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}+\cdots+E_{n} Y_{n}- & V\left(Y_{1}+Y_{2}+Y_{3}+\cdots+Y_{n}\right) \\
& =V Y_{2}
\end{aligned}
$$

voter:
if $T_{2}=0$
ie $V_{\text {No: Load }}$ with $Y_{L}=0$,

$$
\sqrt{V_{N_{0} t_{\text {ad }}}}=\left.\frac{E_{1} y_{1}+E_{2} y_{2}+\cdots+E_{n} y_{n}}{\vdots y_{1}+y_{2}+y_{3}+i+y_{n}}\right|_{y_{L}=0 .}
$$

Nate:- Inthe above cone the polantivn of the Source. E_{2} are revere then E_{2} in ouplaceid by $-E_{2}^{4}$ in the exprunim of "V V_{L}.
(Q) Find the powendicivord. by the haed geventence $R_{L_{-}}$ and Lement supplidd by Each same inthe odt Shown using millimani thorm:

$$
\begin{aligned}
V_{2} & =\frac{E_{1} y_{1}+E_{2} y_{2}+E_{3} Y_{3}}{Y_{1}+\varphi_{2}+Y_{3}+Y_{1}} \\
& =\frac{10\left(\frac{1}{1}\right)+(-25)\left(\frac{1}{5}\right)+20\left(\frac{1}{2}\right)}{\sim\left(\frac{1}{1}\right)+\left(\frac{1}{5}\right)+\left(\frac{1}{2}\right)+\left(\frac{1}{10}\right)}=833 \text { قoldh }
\end{aligned}
$$

che

$$
\begin{aligned}
& I_{L}=\frac{D}{R_{L}}=\frac{8.333}{10}=0.833 R \\
& =I_{1}+I_{2}+I_{3} \\
& I_{L}=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

The tromogencty pmixthat
if in the prinuple obeyed by the all himear velwin.
Dif" Dr 2 In a hinear Niw it the excitation in roltiplicd with a [orstant (k) then the roponne in all the oth brancins of He $\mathrm{N}^{(w)}$ arealso multiplied with the Saine Constant (k) :

\rightarrow So, tere the Excitation in XLL by. 3 and tunce. inthersusponss abs...
Note': Willon MuHtipl Sours ou pront then the Sp ${ }^{T}$ in appliad. Friti and Later the tiomoginty principle.
(2)

solu:- ung SPT $T_{1}=k_{1} v_{1}+k_{2} v_{2}$
2000 $0.5=k_{1}(2) \Rightarrow k_{1}=0.2 r$ $k_{2}(5)=-1 \Rightarrow k_{2}=-1 / 5$.

$$
\begin{aligned}
& \Rightarrow I=k_{1} v_{1}+k_{2} v_{2} \\
& I=0.25 v_{1}-i_{1} v_{2} \\
& I=0.25(6)-1 / 5(-8) \\
& =\frac{10}{4}+1=25+1=3.5 \\
& I=3.5 \text { Ampin } \\
& I=
\end{aligned}
$$

(8) In the cit skew n
i) $I_{3}=1.5 \mathrm{~A}$ when $V_{a}=20 v$ and $\left.V_{b}=0.\right\}$ find $I_{3}=$ b

$$
y_{a}=50 v+y_{b-c}
$$

Food I_{3}
ii) $\tilde{I}_{u}=2 \mathrm{~A}$ when $V_{a}=204$ and $V_{b}=50 \mathrm{~V}$.

$$
I_{4}=-1 \text {, whee } V_{a}=5+V_{b} 20 \mathrm{~V}
$$

Solute using st.

$$
\begin{aligned}
& \begin{array}{l}
I_{3}=k_{1} v_{a}+k_{2} v_{b} \\
n \quad I_{3}=105 \mathrm{~A} ; v_{a}=20+v_{b}=0
\end{array} \\
& \begin{array}{l}
I_{3}=k_{1} v_{a}+k_{2} v_{b} . \\
\text { given } I_{3}=1.5 A ; v_{a}=20+v_{b}=0 .
\end{array} \\
& 105=k_{1}(20)+k_{2}(0) \\
& \begin{array}{l}
105=k_{1}(20)+k_{2}(0) \\
\Rightarrow k_{1}=\frac{1.5}{20}=\frac{15}{20}=00075
\end{array} \\
& \Rightarrow \quad V_{a}=50 \mathrm{~V} ; v_{b}=20 \mathrm{ve} \quad R_{3}=\text { ? } \\
& I_{3}=k_{1} v_{a}+k_{2} v_{b}
\end{aligned}
$$

$$
I_{3}=0.075(50)+4 y^{0}(0)=3.75 . \mathrm{A}
$$

(

$$
\begin{aligned}
& I_{4}=k_{3} v_{a}+k_{4} v_{b} \\
& 2=k_{3}(20)+k_{u}(50) \\
& -1=k_{3}(50)+k_{4}(20) \\
& k_{3}=-0.0428, \quad k_{4}=0.05414
\end{aligned}
$$

$$
\begin{aligned}
I_{u} & =-0.0428 v_{a}+0.05714 v_{b} \\
& =-0.0418(30)+8.05714(100)
\end{aligned}
$$

$$
I_{u}=6.43 \mathrm{~A}
$$

Module 1: Basic Circuit Concepts

Network: Any interconnection of network or circuit elements (R, L, C, Voltage and Current sources).

Circuit: Interconnection of network or circuit elements in such a way that a closed path is formed and an electric current flows in it.

Active Circuit elements deliver the energy to the network (Voltage and Current sources)

Passive Circuit elements absorb the energy from the network (R, L and C).

Active elements:

Ideal Voltage Source is that energy source whose terminal voltage remains constant regardless of the value of the terminal current that flows. Fig.1a shows the representation of Ideal voltage source and Fig.1b, it's V-I characteristics.

Fig.1a: Ideal Voltage source Representation

Fig. 1b: V-I characteristics

Practical Voltage source: is that energy source whose terminal voltage decreases with the increase in the current that flows through it. The practical voltage source is represented by an ideal voltage source and a series resistance called internal resistance. It is because of this resistance there will be potential drop within the source and with the increase in terminal current or load current, the drop across resistor increases, thus
reducing the terminal voltage. Fig.2a shows the representation of practical voltage source and Fig. 2 b , it's V-I characteristics.

Fig. 2a: Practical Current Source

Here, $i_{1}=\mathrm{i}-\mathrm{v}_{1} / \mathrm{R}$...... (2)
Dependent or Controlled Sources: These are the sources whose voltage/current depends on voltage or current that appears at some other location of the network. We may observe 4 types of dependent sources.
i) Voltage Controlled Voltage Source (VCVS)
ii) Voltage Controlled Current Source (VCCS)
iii) Current Controlled Voltage Source (CCVS)
iv) Current Controlled Current Source (CCCS)

Fig.3a, 3b, 3c and 3d represent the above sources in the same order as listed.

Fig. 3 a) VCVS
b) VCCS
c) CCVS
d) CCCS

Kirchhoff's Voltage Law (KVL)

It states that algebraic sum of all branch voltages around any closed path of the network is equal to zero at all instants of time. Based on the law of conservation of energy.

Fig. 4: Example illustrating KVL
Applying KVL clockwise, $+\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}-\mathrm{V}_{\mathrm{g}}=0$...... (3)

$$
\begin{array}{r}
\Rightarrow V_{g}=V_{1}+V_{2}+V_{3} \ldots . .(4) \text {, indicative of energy delivered } \\
=\text { energy absorbed }
\end{array}
$$

Kirchhoff's Current Law (KCL)

The algebraic sum of branch currents that leave a node of a network is equal to zero at all instants of time. Based on the law of conservation of charge.

Fig. 5: Example illustrating KCL
Applying $K C L$ at node $X,+I_{1}+I_{2}-I_{3}-I_{4}+I_{5}=0$ \qquad
$\Rightarrow I_{3}+I_{4}=I_{1}+I_{2}+I_{5} \ldots \ldots$ (6), indicative of sum of incoming currents
= sum of outgoing currents at a node.

Source Transformation

Source Transformation involves the transformation of voltage source to its equivalent current source and vice-versa.

Consider a voltage source with a series resistance R, in Fig. 6a and a current source with the same resistance R connected across, in Fig. 6 b.

Fig.6a Voltage Source

Fig.6b Current Source

The terminal voltage and current relationship in the case of voltage source is;
$v_{1}=v-i_{1} R \ldots \ldots$ (7)

The terminal voltage and current relationship in the case of current source is;
$\mathrm{i}_{1}=\mathrm{i}-\mathrm{v}_{1} / \mathrm{R}$, which can be written as, $\mathrm{v}_{1}=\mathrm{i} \mathrm{R}-\mathrm{i}_{1} \mathrm{R}$
If the voltage source above has to be equivalently transformed to or represented by, a current source then the terminal voltages and currents have to be same in both cases.

This means eqn. (7) should be equal to eqn. (8). This implies, $v=i R$ or $i=v / R . . .(9)$. If eqn.(9) holds good, then the voltage source above can be equivalently transformed to or represented by, the current source shown above and vice-versa.

Problems:

1) For the network shown below in Fig.7, find the current through 2Ω resistor, using source transformation technique.

Fig. 7

Solution: In the given circuit, Converting 5A source to voltage source so that resistor 4Ω comes in series with source resistor 3Ω and equivalent of them can be found. Also converting 1A source to voltage source, we obtain the circuit as below;

Converting 15 V source above to current source and converting $3 \mathrm{~V}_{\mathrm{x}}$ dependent current source to dependent voltage source, we get the following;

Taking equivalent of the parallel combination of 7Ω resistors and converting 15/7 A current source to voltage source, we get as shown below;

Applying KVL to the loop above clockwise, we get;
$3.5 I-51 V_{x}+17 I+2 I+9 I+9-7.5=0$
From the circuit above, $\mathrm{V}_{\mathrm{x}}=21$, substitute in above eq, then we get;
$-70.5 \mathrm{I}=-1.5$
$\Rightarrow \mathrm{I}=0.02127 \mathrm{~A}=21.27 \mathrm{~mA}$
2) Represent the network shown below in Fig.8, by a single voltage source in series with a resistance between the terminals A and B , using source transformation techniques

Fig. 8

Solution: In the circuit above, 5 V and 20 V sources are present in series arm and they are series opposing.

So, the sources are replaced by single voltage source which is the difference of two (as they are opposing, if series aiding then sum has to be considered). The polarity of the resulting voltage source will have same as that of higher value voltage source. Multiple current sources in parallel, can be added if they are in same direction and if they are in opposite direction, then difference is taken and resulting source will have same direction as that of higher one.

Taking source transformation, such that we get all current sources in parallel and all resistances in parallel, between the terminals. This leads to finding of equivalent current source and equivalent resistance between A-B. The source transformation leads to single voltage source in series with a resistance. These are shown below;

Illustration of Mesh Analysis:

3) Find the mesh currents in the network shown in fig. 9

We identify two meshes; $10 \mathrm{~V}-2 \Omega-4 \Omega$ called as mesh 1 and $3 \Omega-2 \mathrm{~V}-4 \Omega$ called as mesh2. We consider i_{1} to flow in mesh1 and i_{2} to flow in mesh2. Their directions are always considered to be clockwise. If they are in opposite direction in actual, we get negative values when we calculate them, indicative of actual direction to be opposite.
$10 \mathrm{~V}-2 \Omega$ branch only belongs to mesh1 and so current through it is i_{1} and $3 \Omega-2 \mathrm{~V}$ branch only belongs to mesh2 and so current through it is always i_{2}. Also, 4Ω belongs to both meshes and so, the current through it will be the resultant of i_{1} and i_{2}. These are shown below;

Next we will apply KVL to each of the meshes; As a result, In this case, we get two equations in terms of i_{1} and i_{2} and when we solve them we get i_{1} and i_{2}. And when we know the mesh current values, we can find the response at any point of network.

The polarities of the potential drops across passive circuit elements are based on the directions of the current that flows through them

Applying KVL to mesh1;

$$
\begin{align*}
& +2 i_{1}+4\left(i_{1}-i_{2}\right)-10=0 \\
& \Rightarrow+6 i_{1}-4 i_{2}=10 \ldots \ldots(\tag{1}
\end{align*}
$$

Applying KVL to mesh2;
$+3 i_{2}+2-4\left(i_{1}-i_{2}\right)=0$
Above equation can be rewritten as
$+3 i_{2}+2+4\left(i_{2}-i_{1}\right)=0$
$\Rightarrow-4 i_{1}+7 i_{2}=-2$
Also observing the bold equations above, we may say that easily the potential drops across passive circuit elements can be considered to take +ve signs. From now onwards, we will not specifically identify polarities of potential drops across passive circuit elements. They are considered to take positive signs. For the case of shared element, like 4Ω above, which is shared between mesh1 and mesh2, the potential drop across it , is considered to be $+4\left(i_{1}-i_{2}\right)$, when we apply KVL to mesh1 and $+4\left(i_{2}-i_{1}\right)$, when we apply KVL to mesh2. Now eqn1 and eqn2 above can be represented in matrix form as show \boldsymbol{T};

Using cramer's rule;

$$
\begin{aligned}
& \Delta=\left|\begin{array}{cc}
6 & -4 \\
-4 & 7
\end{array}\right|=26 \\
& \Delta i_{1}=\left|\begin{array}{cc}
10 & -4 \\
-2 & 7
\end{array}\right|=62 \\
& \Delta i_{1}=\left|\begin{array}{cc}
6 & 10 \\
-4 & -2
\end{array}\right|=28 \\
& \Rightarrow>i_{1}=\Delta i_{1} / \Delta=2.384 \mathrm{~A} \\
& \Rightarrow i_{2}=\Delta i_{2} / \Delta=1.076 \mathrm{~A}
\end{aligned}
$$

As already told, if we know the mesh current values, we can find the response at any point of network. And so, V_{x} and I_{x} identified, can be easily obtained using the mesh currents.
$\mathrm{I}_{\mathrm{x}}=-\mathrm{i}_{2}=-1.076 \mathrm{~A}$
$V_{x}=3 i_{2}=3.228 \mathrm{~A}$

4) Find the power delivered or absorbed by each of the sources shown in the network in Fig.10.Use meshanalysis

Solution:-

Power delivered by 125 V source, $\mathrm{P}_{125}=125 \mathrm{i}_{1}$
Power delivered by 50 V source, $\mathrm{P}_{50}=50 \mathrm{I}=50\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)$
Power delva. by dependent current source, $\mathrm{P}_{\mathrm{ds}}=\left(0.2 \mathrm{~V}_{\mathrm{a}}\right)\left(\mathrm{V}_{\mathrm{ds}}\right)=\left(\mathrm{i}_{1} \mathrm{i}_{3}\right)\left(\mathrm{v}_{\mathrm{ds}}\right)$
\{Because $\mathrm{V}_{\mathrm{a}}=5\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)$ \}
From the circuit; $\mathrm{V}_{\mathrm{a}}=5\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)$
Also; $i_{2}=0.2 \mathrm{~V}_{\mathrm{a}}=\mathrm{i}_{1}-\mathrm{i}_{3}$ (it is as good as specifying the value of i_{2} or we can say we have obtained equation from mesh2, so no need of applying KVL to mesh2)

Applying KVL to mesh1;
$5\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)+7.5\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)+50-125=0$
12.5 $\mathrm{i}_{1}-7.5 \mathrm{i}_{2}-5 \mathrm{i}_{3}=75$; substituting $\mathrm{i}_{2}=\mathrm{i}_{1}-\mathrm{i}_{3}$; we have;
$5 i_{1}+2.5 i_{3}=125$ \qquad
Applying KVL to mesh3;
$17.5 \mathrm{i}_{3}+2.5\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right)+5\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right)=0$
$-5 i_{1}-2.5 i_{2}+25 i_{3}=0$; substituting $i_{2}=i_{1}-i_{3}$; we have;
$-7.5 i_{1}+27.5 i_{3}=0$
Solving (1) and (2), we get; $i_{1}=13.2 \mathrm{~A}$ and $\mathrm{i}_{3}=3.6 \mathrm{~A}$
So, $i_{2}=i_{1}-i_{3}=13.2-3.6=9.6 \mathrm{~A}$
$P_{125}=125 \mathrm{i}_{1}=125(13.2)=1650 \mathrm{~W}$ (power delivered)
$P_{50}=50 \mathrm{I}=50\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)=50(9.6-13.2)=-180 \mathrm{~W}$, here negative value of power delivered is the indicative of the fact that power is actually absorbed by 50 V source.

To find $v_{\text {ds }}$ in the network shown, we apply KVL to the outer loop
$17.5 \Omega \rightarrow 0.2 \mathrm{~V}_{\mathrm{a}} \rightarrow 125 \mathrm{~V}$;
$+17.5 \mathrm{i}_{3}-\mathrm{v}_{\mathrm{ds}}-125=0$ \{when applying KVL, the potential drop across passive circuit element is taken as, + (resistance or impedance value) x (that particular current which is in alignment with KVL direction), if clockwise direction is considered, then clockwise current)\}

$$
=>v_{d s}=-62 V
$$

$P_{d s}=\left(0.2 V_{a}\right)\left(v_{d s}\right)=\left(i_{1}-i_{3}\right) v_{d s}=-595.2 \mathrm{~W}$ => Dependent source absorbs power of 595.2 W
5) Find the power delivered by dependent source in the network shown in Fig.11.Use mesh analysis

Fig. 11

Solution:-

From the circuit,
$\mathrm{i}_{\mathrm{a}}=\mathrm{i}_{2}-\mathrm{i}_{3}$
Power delivered by dependent source, $\mathrm{P}_{\mathrm{ds}}=\left(20 \mathrm{i}_{\mathrm{a}}\right)\left(\mathrm{i}_{2}\right)=20\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \mathrm{i}_{2}$
Apply KVL to mesh1
$5 \mathrm{i}_{1}+\mathbf{1 5}\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)+\mathbf{1 0}\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)-\mathbf{6 6 0}=\mathbf{0}$
$30 \mathrm{i}_{1}-\mathbf{1 0} \mathrm{i}_{2}-\mathbf{1 5} \mathrm{i}_{3}=\mathbf{6 6 0}$

Apply KVL to mesh2
$\mathbf{1 0}\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+\mathbf{5 0}\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right)-\mathbf{2 0} \mathrm{i}_{\mathrm{a}}=\mathbf{0}$
$\mathbf{1 0}\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+\mathbf{5 0}\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \mathbf{- 2 0}\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right)$
$-10 i_{1}+40 i_{2}-30 i_{3}=0$
Apply KVL to mesh3
$\mathbf{2 5} \mathrm{i}_{3}+\mathbf{5 0}\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right)+\mathbf{1 5}\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right)=\mathbf{0}$
$-15 \mathrm{i}_{1}-50 \mathrm{i}_{2}+90 \mathrm{i}_{3}=0$ \qquad
Solving (1), (2) and (3), we get $i_{2}=27 \mathrm{~A}$ and $\mathrm{i}_{3}=22 \mathrm{~A}$
$\left.P_{d s}=(20)\left(i_{2}-i_{3}\right) i_{2}=\mathbf{2 0 (5) 2 7}\right)=2700 \mathrm{~W}$, power delivered.

AC Circuits

These circuits consist L and C components along with R. Here we consider the excitation of the circuits by sinusoidal sources. Consider an AC circuit shown below;

Fig. 12

Fig. 13

Let the applied voltage, $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}+\theta_{1}\right)$, the circuit current that flows is $i(t)$ and is given as; $i(t)=I_{m} \sin \left(\omega t+\theta_{2}\right)$. These two sinusoidal quantities can be represented by phasors; a phasor is a rotating vector in the complex plane. This is shown in Fig.13, which is a voltage phasor. The phasor has a magnitude of V_{m} and rotates at an angular frequency of ω with time.

The voltage phasor is given by $\mathrm{V}_{\mathrm{m}}\left\llcorner\theta_{1}\right.$ (Also referred as polar form of phasor). The rectangular form is $V_{m} \cos \theta_{1}+j V_{m} \sin \theta_{1}$.

Similarly, the current phasor is given by $\mathrm{I}_{\mathrm{m}}\left\llcorner\theta_{2}\right.$ (Also referred as polar form of phasor). The rectangular form is $\mathrm{I}_{\mathrm{m}} \cos \theta_{2}+\mathrm{j} \mathrm{I}_{\mathrm{m}} \sin \theta_{2}$.

The ratio of voltage phasor to the current phasor is called as impedance. Z $=\left(\mathrm{V}_{\mathrm{m}}\left\llcorner\theta_{1}\right) /\left(\mathrm{I}_{\mathrm{m}}\left\llcorner\theta_{2}\right)=\left(\mathrm{V}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}\right)\left\llcorner\left(\theta_{1}-\theta_{2}\right)=\left(\mathrm{V}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}\right)\llcorner\theta\right.\right.\right.$

The impedance although a complex quantity but is not a phasor, as with respect to time, the angle of impedance do not change

- If the AC circuit above is represented equivalently by single resistance, then $\mathrm{Z}=\left(\mathrm{V}_{\mathrm{m}}\left\llcorner\theta_{1}\right) /\left(\mathrm{I}_{\mathrm{m}}\left\llcorner\theta_{1}\right)\right.\right.$ \{since in resistance there is no phase difference between voltage and current and so $\left.\theta_{2}=\theta_{1}\right\}$.

So, $Z=\left(V_{m} / I_{m}\right)\left\llcorner 0^{\circ}\right.$

$$
\begin{aligned}
& =\left(\mathrm{V}_{\mathrm{m}} / I_{m}\right) \cos 0^{\circ}+j\left(\mathrm{~V}_{\mathrm{m}} / I_{m}\right) \sin 0^{\circ} \\
& =\mathrm{V}_{\mathrm{m}} / I_{m}=R .
\end{aligned}
$$

- If the AC circuit above is represented equivalently by single inductance, then $\mathrm{Z}=\left(\mathrm{V}_{\mathrm{m}}\left\llcorner\theta_{1}\right) /\left(\mathrm{I}_{\mathrm{m}}\left\llcorner\left(\theta_{1}-90^{\circ}\right)\right)\{\right.\right.$ since in inductance, current lags the voltage in phase by $\left.90^{\circ}\right\}$

So, $Z=\left(V_{m} / I_{m}\right)\left\llcorner 90^{\circ}\right.$

$$
=\left(\mathrm{V}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}\right) \cos 90^{\circ}+j\left(\mathrm{~V}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}\right) \sin 90^{\circ}
$$

$$
=j\left(V_{m} / I_{m}\right)
$$

$=j \omega L$ \{in inductance, the ratio of peak value of voltage to peak value of current is always the reactance which is given by ωL \}. Now we can say, any inductance of L henry can be equivalently represented by impedance of j ω L Ohms.

- If the AC circuit above is represented equivalently by single capacitance, then $Z=\left(V_{m}\left\llcorner\theta_{1}\right) /\left(I_{m}\left\llcorner\left(\theta_{1}+90^{\circ}\right)\right)\{\right.\right.$ since in capacitance, current leads the voltage in phase by $\left.90^{\circ}\right\}$

So, $Z=\left(V_{m} / I_{m}\right)\left\llcorner-90^{\circ}\right.$

$$
=\left(V_{m} / I_{m}\right) \cos 90^{\circ}-j\left(V_{m} / I_{m}\right) \sin 90^{\circ}
$$

$$
=-j\left(V_{m} / I_{m}\right)
$$

$$
=-j(1 / \omega C)
$$

$=-\mathrm{j} / \omega \mathrm{C}$ \{in capacitance, the ratio of peak value of voltage to peak value of current is always the reactance which is given by $1 / \omega c$. Now we can say, any capacitance of C farad can be equivalently represented by impedance of -j/ $\omega \mathrm{C}$ Ohms.
6) Find the current through the capacitor in the circuit shown in Fig.14. Use mesh Analysis.

Fig. 14

Solution:

The sources are represented by phasors. The mesh currents are identified. The current through the capacitor is i_{3}. So, i_{3} needs to be found using mesh analysis.

Apply KVL to mesh1;
j4 $\left(i_{1}-i_{3}\right)+2\left(i_{1}-i_{2}\right)-\left(5\left\llcorner 0^{\circ}\right)=0\right.$
(2+j4) $i_{1}-2 i_{2}-j 4 i_{3}=5$
Apply KVL to mesh2;

$$
\begin{aligned}
& 3\left(i_{2}-i_{3}\right)+\left(10\left\llcorner 45^{\circ}\right)+2\left(i_{2}-i_{1}\right)=0\right. \\
& -2 i_{1}+5 i_{2}-3 i_{3}=-\left(10\left\llcorner 45^{\circ}\right)=-7.07-j 7.07 \ldots \ldots .(2)\right.
\end{aligned}
$$

Apply KVL to mesh3;

$$
\begin{aligned}
& -j 2 i_{3}+3\left(i_{3}-i_{2}\right)+j 4\left(i_{3}-i_{1}\right)=0 \\
& -j 4 i_{1}-3 i_{2}+(3+j 2) i_{3}=0 \ldots \ldots \text { (3) Mesh equations in matrix form; }
\end{aligned}
$$

$$
\left.\begin{array}{cccc}
2+j 4 & -2 \\
-2 & 5 \\
-j 4 & -3
\end{array} \begin{array}{ccc}
-j 4 & i_{1} & 5 \\
-3 & i_{2} & -7.07- \\
3+j 2 & i_{3} & 0
\end{array}\right) j 7.07
$$

Using Cramer's rule to find i_{3}.

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
2+j 4 & -2 & -j 4 \\
-2 & 5 & -3 \\
-j 4 & -3 & 3+j 2
\end{array}\right| \\
& =(2+j 4)[5(3+j 2)-9]+2[-2(3+j 2)-(-3)(-j 4)]-j 4[6+j 20] \\
& =40-j 12
\end{aligned}
$$

$$
\Delta i_{3}=\left|\begin{array}{llc}
2+\mathrm{j} 4 & -2 & 5 \\
-2 & 5 & -7.07-\mathrm{j} 7.07
\end{array}\right|
$$

$$
\begin{array}{lll}
-j 4 & -3 & 0
\end{array}
$$

$=(2+\mathrm{j} 4)[+3(-7.07-\mathrm{j} 7.07)]+2[+\mathrm{j} 4(-7.07-\mathrm{j} 7.07)]+5[6+\mathrm{j} 20]$
$=128.98-\mathrm{j} 83.82$

Therefore, $\mathrm{i}_{3}=\Delta \mathrm{i}_{3} / \Delta=(128.98-\mathrm{j} 83.82) /(40-\mathrm{j} 12)$
= 3.535-j1.035

$$
=3.68 \mathrm{~L}-16.31^{\circ} \mathrm{A} .
$$

The above result represents the phasor of capacitor current. From this we can easily write the steady state expression of capacitor current, as, $\mathrm{i}_{3}(\mathrm{t})=3.68 \cos \left(2 \mathrm{t}-16.31^{\circ}\right) \mathrm{A}$

Node analysis

Here, we identify nodes of the given network and consider one node as ground node, which is considered to be zero potential point. We then identify the voltage at each of the remaining nodes which is nothing but potential difference between a node of interest and ground node, with ground node as reference. Node analysis involves the computation of node voltages, and when once these are found, we can find the response at any point of network.
7) Find the node voltages in the network shown in Fig.15;

Fig. 15

Solution:
There are 3 nodes in the network. The bottom node is selected as ground node. The voltage at node1 is identified as v_{1} and it is the potential difference between the node1 and the ground, with ground as reference. The voltage at node 2 is identified as v_{2} and it is the potential difference between node2 and the ground, with ground as reference.

Recall KCL statement that "the algebraic sum of branch currents leaving a node of a network is zero at all instants of time".

Apply KCL at node1;

$$
\begin{align*}
&-10+2 v_{1}+4\left(v_{1}-v_{2}\right)=0 \\
& \Rightarrow 6 v_{1}-4 v_{2}=10 . . \tag{1}
\end{align*}
$$

Apply KCL at node2;

$$
\begin{align*}
& +4\left(v_{2}-v_{1}\right)+3 v_{2}+2=0 \\
& \Rightarrow-4 v_{1}+7 v_{2}=-2 \ldots . \tag{2}
\end{align*}
$$

Node equations in Matrix form

$$
\begin{array}{rr}
6 & -4 \\
-4 & 7
\end{array}\left(\begin{array}{l}
v_{1} \\
v_{2}
\end{array}=\begin{array}{c}
10 \\
-2
\end{array}\right.
$$

Using Cramer's rule;

$$
\begin{aligned}
& \Delta=\left|\begin{array}{rr}
6 & -4 \\
-4 & 7
\end{array}\right|=26 \\
& \Delta v_{1}=\left|\begin{array}{cc}
10 & -4 \\
-2 & 7
\end{array}\right|=62 \\
& \Delta v_{2}=\left|\begin{array}{cc}
6 & 10 \\
-4 & -2
\end{array}\right|=28 \\
& v_{1}=\Delta v_{1} / \Delta=62 / 26
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}_{1}=2.384 \mathrm{~V} \\
& \mathrm{v}_{2}=\Delta \mathrm{v}_{2} / \Delta=28 / 26 \\
& \mathrm{v}_{2}=1.076 \mathrm{~V}
\end{aligned}
$$

Node Analysis Contd.

8) Use Node analysis to find the voltage V_{x} in the circuit shown in Fig. 16

Fig. 16
The ground node and other nodes with their voltages are identified as shown;

Although that point where two circuit elements join is referred as node (like 30 V and 3 mho joining point above), we do not consider voltage there or apply KCL, because it will simply contribute for redundancy, as without considering the above, still the solution can be obtained. Therefore, we consider voltages or apply KCL to those nodes where three or more circuit elements join.

From the circuit; $\mathrm{V}_{\mathrm{x}}=\mathrm{v}_{1}+5-\mathrm{v}_{2}$ and $\mathrm{v} 2=2 \mathrm{~V}_{\mathrm{x}}$
$\mathrm{v}_{2}=2\left(\mathrm{v}_{1}+5-\mathrm{v}_{2}\right)$
$\Rightarrow 2 v_{1}-3 v_{2}=-10$...... (1), now we have an equation expressing v_{2} or an equation associated with node 2 . So no need of applying KCL at node2.
\Rightarrow Apply KCL at node1;
$3\left(v_{1}-(-30)\right)+4+2\left(v_{1}+5-v_{2}\right)=0$
$\Rightarrow 5 \mathrm{v}_{1}-2 \mathrm{v}_{2}=-104$
\Rightarrow Solving (1) and (2), we get;
$\Rightarrow \mathrm{v}_{1}=-26.545 \mathrm{~V}$ and $\mathrm{v}_{2}=-14.363 \mathrm{~V}$
\Rightarrow Therefore, $\mathrm{V}_{\mathrm{x}}=\mathrm{v}_{1}+5-\mathrm{v}_{2}$
$\Rightarrow-26.545+5+14.363=-7.182 \mathrm{~V}$.
9) Find the power delivered by dependent source using node analysis in the circuit shown in Fig. 17.

Fig. 17

Solution: Identify ground node and other node with its voltage as shown;

From the circuit;

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{a}}= \\
& \begin{aligned}
\mathrm{P}_{\mathrm{ds}} / 20 & = \\
& \left(60 \mathrm{i}_{\mathrm{a}}\right) \times\left(\text { current that comes out of }+ \text { ve polarity of } 60 \mathrm{i}_{\mathrm{a}}\right) \\
& =\left(60 \mathrm{i}_{\mathrm{a}}\right)\left[\left(\mathrm{v}_{1}-\left(-60 i_{a}\right)\right) /(10+15)\right] \\
& =\left(60 \mathrm{i}_{\mathrm{a}}\right)\left(\mathrm{v}_{1}+60 \mathrm{i}_{\mathrm{a}}\right) / 25
\end{aligned}
\end{aligned}
$$

10) Find the current i_{1} in the network shown in Fig. 18. Use node Analysis.

Fig. 18

Identify ground node and other node voltages as shown. Also writing source using phasor representation.

From the circuit; $\mathrm{i}_{1}=\mathrm{v}_{1} /(-\mathrm{j} 2.5)^{\frac{\mathrm{x}}{\mathrm{w}}}$
Apply KCL at node1;

$$
\begin{align*}
\mathrm{v}_{1} /(-j 2.5)+\left(\mathrm{v}_{1}-\left(20\left\llcorner 0^{\circ}\right)\right) / 10+\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) / \mathrm{j} 4=0\right. \\
\quad \Rightarrow \mathrm{j} 0.4 \mathrm{v}_{1}+0.1 \mathrm{v}_{1}-j 0.25 \mathrm{v}_{1}+j 0.25 \mathrm{v}_{2}=2 \\
\Rightarrow(0.1+j 0.15) \mathrm{v}_{1}+\mathrm{j} 0.25 \mathrm{v}_{2}=2 \ldots \ldots .(1) \tag{1}
\end{align*}
$$

Apply KCL at node 2;

$$
\begin{align*}
-2 \mathrm{i}_{1} & +\mathrm{v}_{2} / \mathrm{j} 2+\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) / \mathrm{j} 4=0 \\
& \Rightarrow-2\left(\mathrm{v}_{1} /(-\mathrm{j} 2.5)\right)+\mathrm{v}_{2} / \mathrm{j} 2+\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) / \mathrm{j} 4=0 \\
& \Rightarrow-\mathrm{j} 0.8 \mathrm{v}_{1}-\mathrm{j} 0.5 \mathrm{v}_{2}-\mathrm{j} 0.25 \mathrm{v}_{2}+\mathrm{j} 0.25 \mathrm{v}_{1}=0 \\
& \Rightarrow-\mathrm{j} 0.55 \mathrm{v}_{1}-\mathrm{j} 0.75 \mathrm{v}_{2}=0 \ldots(2) \tag{2}
\end{align*}
$$

Using Cramer's rule;

$$
\left.\begin{array}{l}
\Delta=\left|\begin{array}{cc}
0.1+\mathrm{j} 0.15 & \mathrm{j} 0.25 \\
-\mathrm{j} 0.55 & -\mathrm{j} 0.75
\end{array}\right|=(0.1+\mathrm{j} 0.15)(-\mathrm{j} 0.75)-0.25(0.55) \\
=-0.025-\mathrm{j} 0.075
\end{array}\right] \begin{aligned}
& \Delta \mathrm{v}_{1}=\left|\begin{array}{cc}
2 & \mathrm{j} 0.25 \\
0 & -\mathrm{j} 0.75
\end{array}\right|=-\mathrm{j} 1.5 \\
& \mathrm{v}_{1}=\Delta \mathrm{v}_{1} / \Delta=(-\mathrm{j} 1.5) /(-0.025-\mathrm{j} 0.075)=18+\mathrm{j} 6=18.97\left\llcorner 18.43^{\circ} \mathrm{V}\right. \\
& \text { Therefore, } \mathrm{i}_{1}=\mathrm{v}_{1} /(-\mathrm{j} 2.5)=-2.4+\mathrm{j} 7.2=7.58\left\llcorner 108.43^{\circ} \mathrm{A} .\right. \\
& \mathrm{i}_{1}(\mathrm{t})=7.58 \cos \left(4 \mathrm{t}+108.43^{\circ}\right) \mathrm{A}
\end{aligned}
$$

Concept of Supermesh:

Supermesh concept is considered whenever a current source appears in common to two meshes.

Consider the Network Below;

Fig. 19

To know the advantage of applying supermesh concept; first consider usual way;

Applying KVL to mesh 1;
$\mathrm{R}_{1} \mathrm{i}_{1}+\mathrm{v}_{\mathrm{x}}-\mathrm{V}_{\mathrm{s}}=0$
$R_{1} i_{1}+v_{x}=V_{5} \ldots .$.
Applying KVL to mesh 2;
$\left(R_{2}+R_{3}\right) i_{2}-v_{x}=0$
$\mathrm{v}_{\mathrm{x}}=\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)_{\mathrm{i}_{2}}$
Substituting (2) in (1), we get;
$R_{1} i_{1}+\left(R_{2}+R_{3}\right) i_{2}=V_{5}$
Also from the circuit;

$$
\begin{align*}
& \mathrm{i}_{2}-\mathrm{i}_{1}=\mathrm{I}_{\mathrm{s}} \\
& \quad \Rightarrow \mathrm{i}_{2}=\mathrm{I}_{\mathrm{s}}+\mathrm{i}_{1} \tag{4}
\end{align*}
$$

\Rightarrow Substituting (4) in (3) we get, i_{1};
\Rightarrow Substituting i_{1} in (4), we get i_{2}.
Applying the concept of supermesh;

Here, after identifying a current source common to two meshes; we first write constraint equation which relates corresponding mesh currents and the current source value.
$\mathrm{i}_{2}-\mathrm{i}_{1}=\mathrm{l}_{\mathrm{S}}$
Or $i_{2}=I_{s}+i_{1} \ldots$. (1)
We then club those two meshes and call it as supermesh; shown by dashed lines in the figure; Now we apply KVL to supermesh;
$R_{1} i_{1}+R_{1} i_{2}+R_{3} i_{2}-V_{s}=0$
$R_{1} i_{1}+\left(R_{1}+R_{3}\right) i_{2}=V_{5} \ldots \ldots(2)$, this equation is exactly the same as (3) in previous case. In this case, it was easily obtained thus reducing the steps. Now, substituting (1) in (2), we get i_{1}. Then substituting i_{1} in (1) we get i_{2}. Therefore, mesh currents were easily obtained using supermesh concept.
11) Use mesh analysis to find V_{x} in the circuit shown in fig. 20

Fig. 20

Solution: From the circuit; $\mathrm{V}_{\mathrm{x}}=10 \mathrm{i}_{1}$
Identifying 3 A and $\mathrm{V}_{\mathrm{x}} / 4$ current sources appearing in common to mesh-1\&2 and mesh- $2 \& 3$ respectively; the constraint equations are written as; $\mathrm{i}_{2}-\mathrm{i}_{1}$
$=3$

$$
\Rightarrow>i_{2}=3+i_{1} \quad \text { Also } i_{3}-i_{2}=V_{x} / 4,
$$

$w k t, V_{x}=10 i_{1}$
Substituting in above equation we get $i_{3}-i_{2}=10 i_{1} / 4$, wkt $i_{2}=3+i_{1}$ substituting this $=>4 \mathrm{i}_{3}-4\left(3+\mathrm{i}_{1}\right)-10 \mathrm{i}_{1}=0$
$-14 i_{1}+4 i_{3}=12$

Apply KVL to supermesh

formed by $10 \Omega \rightarrow 2 \Omega \rightarrow 4 \Omega \rightarrow 25 \mathrm{~V} \rightarrow 50 \mathrm{~V} \rightarrow 10 \Omega$

$$
\begin{align*}
& 10 i_{1}+2 i_{2}+4 i_{3}+25-50=0 \\
& \quad \Rightarrow 10 i_{1}+2 i_{2}+4 i_{3}=25 \\
& \Rightarrow 10 i_{1}+2\left(3+i_{1}\right)+4 i_{3}=25 \\
& \quad \Rightarrow 12 i_{1}+4 i_{3}=19 \ldots \ldots . .(2) \\
& \Rightarrow \text { Solving (1) and (2), we get } i_{1}=0.2692 \text { A and } i_{3}=3.9423 \mathrm{~A} \tag{2}\\
& \quad \Rightarrow i_{2}=3+i_{1}=3.2692 \mathrm{~A} . \\
& \Rightarrow V_{x}=10 i_{1}=2.692 \mathrm{~V}
\end{align*}
$$

12) Find v_{x} in the circuit shown in fig. 21, using mesh analysis;

Fig. 21
Solution:-

From the circuit; $\mathrm{v}_{\mathrm{x}}=-\mathrm{j} 4 \mathrm{i}_{2}$

$$
i_{x}=i_{1}-i_{2}
$$

$$
i_{3}-i_{2}=2 i_{x} \text { (current source } 2 i_{x} \text { appears in common to two }
$$

meshes)

$$
\begin{aligned}
& i_{3}-i_{2}=2\left(i_{1}-i_{2}\right) \\
& i_{3}=2 i_{1}-i_{2}
\end{aligned}
$$

Apply KVL to mesh 1 ;
$10 \mathrm{i}_{1}-\mathrm{j} 2.5\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)-\left(20\left\llcorner 0^{\circ}\right)=0\right.$
(10-j2.5) $\mathrm{i}_{1}+\mathrm{j} 2.5 \mathrm{i}_{2}=20$
Apply KVL to supermesh formed by

$$
\mathrm{j} 4 \Omega \rightarrow 2 \Omega \rightarrow 5 \mathrm{~L} 30^{\circ} \rightarrow-\mathrm{j} 2.5 \Omega \rightarrow \mathrm{j} 4 \Omega, \text { we have, }
$$

$j 4 \mathrm{i}_{2}+2 \mathrm{i}_{3}+\left(5\left\llcorner 30^{\circ}\right)-\mathrm{j} 2.5\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)=0\right.$
wkt $i_{3}=2 i_{1}-i_{2}$, subs in above eqn;
$j 4 \mathrm{i}_{2}+2\left(2 \mathrm{i}_{1}-\mathrm{i}_{2}\right)+\left(5 \mathrm{~L} 30^{\circ}\right)-\mathrm{j} 2.5\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)=0$
$(4+\mathrm{j} 2.5) \mathrm{i}_{1}+(-2+\mathrm{j} 1.5) \mathrm{i}_{2}=-\left(5\left\llcorner 30^{\circ}\right)=-4.33-\mathrm{j} 2.5\right.$
Using cramer's rule;

$$
\begin{aligned}
& \Delta=\left|\begin{array}{cc}
10-j 2.5 & \mathrm{j} 2.5 \\
4+\mathrm{j} 2.5 & -2+\mathrm{j} 1.5
\end{array}\right|=(10-\mathrm{j} 2.5)(-2+\mathrm{j} 1.5)-\mathrm{j} 2.5(4+\mathrm{j} 2.5)=-10+\mathrm{j} 10 \\
& \Delta \mathrm{i}_{2}=\left|\begin{array}{cc}
10-\mathrm{j} 2.5 & 20 \\
4+\mathrm{j} 2.5 & -4.33-\mathrm{j} 2.5
\end{array}\right|=-129.55-\mathrm{j} 64.175 \\
& =(10-\mathrm{j} 2.5)(-4.33-\mathrm{j} 2.5)-20(4+\mathrm{j} 2.5) \\
& \mathrm{i}_{2}=\Delta \mathrm{i}_{2} / \Delta=(-129.55-\mathrm{j} 64.175) /(-10+\mathrm{j} 10) \\
& \mathrm{i}_{2}=3.268+\mathrm{j} 9.686
\end{aligned}
$$

$\mathrm{i}_{2}=10.22\left\llcorner 71.35^{\circ} \mathrm{A}\right.$
Therefore, $\mathrm{v}_{\mathrm{x}}=-\mathrm{j} 4 \mathrm{i}_{2}=38.74-\mathrm{j} 13.07=40.89\left\llcorner-18.64^{\circ} \mathrm{V}\right.$

Concept of Supernode:

Supernode concept is applied whenever a voltage source appears in common to two nodes.

Consider the network below;

Fig. 22

To illustrate the advantage of supernode concept; we first find the node voltages of the network by the usual way;

Apply KCL at node 1 ;
$v_{1} / R_{1}-I_{s}+I_{x}=0$
$v_{1} / R_{1}+I_{x}=I_{S}$ \qquad
Apply KCL at node 2;
$v_{2} / R_{2}+v_{2} / R_{3}-I_{x}=0$
$v_{2} / R_{2}+v_{2} / R_{3}=I_{x}$
Subs (2) in (1), we get;
$v_{1} / R_{1}+v_{2} / R_{2}+v_{2} / R_{3}=I_{S}$
Also from the circuit; $\mathrm{V}_{1}-\mathrm{V}_{2}=\mathrm{V}_{\mathrm{S}}$

$$
\begin{equation*}
\Rightarrow v_{1}=V_{S}+v_{2} \ldots \ldots . \tag{4}
\end{equation*}
$$

Substituting (4) in (3) will give the value of v_{2}
Substituting the value of v_{2} in (4) will give the value of v_{1}.

Applying the concept of supernode;

After identifying the voltage source appearing in common to two nodes;
We first write constraint equation; which relates the voltage source value with the corresponding node voltages; here it is; $\mathrm{v}_{1}-\mathrm{v}_{2}=\mathrm{V}_{\mathrm{S}}$

$$
\begin{equation*}
v_{1}=v_{2}+V_{s} \ldots \ldots \tag{1}
\end{equation*}
$$

After this, we club the corresponding nodes to become one node and call it as a supernode. Then we apply KCL to supernode. Here, we apply KCL at supernode X as shown;

$v_{1} / R_{1}-I_{S}+v_{2} / R_{2}+v_{2} / R_{3}=0$
$v_{1} / R_{1}+v_{2} / R_{2}+v_{2} / R_{3}=I_{S}$
The above equation is same as eqn 3 in previous method, but the above equation was easily obtained in just one step. Therefore, when a voltage
source is appearing in common to two nodes, it is always advantageous to consider the concept of supermesh.

Now, substituting (1) in (2), we get v_{2}.
Substituting v_{2} in (2) we get v_{1}.
13) Find i_{a} and v_{a} in the network shown in fig. 23 using node analysis.

Solution:-

From the circuit;

$$
\begin{aligned}
& i=(v-v)_{3} / 250 \\
& a=v_{3} \\
& a=3
\end{aligned}
$$

Also; $\mathrm{v}_{2}=12 \mathrm{~V}$

$$
\begin{gathered}
\mathrm{v}_{1}-\mathrm{v}_{3}=8 \\
\Rightarrow \mathrm{v}_{1}=8+\mathrm{v}_{3}
\end{gathered}
$$

Apply KCL at supernode X;
$\mathrm{v} 1 / 500+\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) / 125+\left(\mathrm{v}_{3}-\mathrm{v}_{2}\right) / 250+\mathrm{v}_{3} / 500=0$
$v_{1}+4 v_{1}-4 v_{2}+2 v_{3}-2 v_{2}+v_{3}=0$
$5 v_{1}-6 v_{2}+3 v_{3}=0$
Substituting $v_{1}=8+v_{3}$ in above equation, we get; $5\left(8+v_{3}\right)-6 v_{2}+3 v_{3}=0$
$-6 v_{2}+8 v_{3}=-40$
$W k t v_{2}=12 \mathrm{~V}$
Therefore, $\mathrm{v}_{3}=(-40+6(12)) / 8=4 \mathrm{~V}$
Now, $i_{a}=\left(v_{2}-v_{3}\right) / 250=0.032=32 \mathrm{~mA}$.

$$
v_{a}=v_{3}=4 V
$$

14)

Find all the node voltages in the network shown in fig. 24

Fig. 2

Solution:

From the circuit;

$\mathrm{V}_{\mathrm{b}}=8 \mathrm{~V}$
Also, $\mathrm{v}_{\mathrm{a}}-\mathrm{v}_{\mathrm{d}}=6 \mathrm{i}_{1}$
$\mathrm{i}_{1}=\left(\mathrm{v}_{\mathrm{b}}-\mathrm{v}_{\mathrm{c}}\right) / 2$ subs in above eqn. we get;

$$
\begin{align*}
v_{\mathrm{a}} & -v_{\mathrm{d}}=6\left(\mathrm{v}_{\mathrm{b}}-v_{c}\right) / 2 \\
& \Rightarrow 2 v_{\mathrm{a}}-2 v_{d}=6 v_{b}-6 v_{c} \\
& \Rightarrow 2 v_{a}+6 v_{c}-2 v_{d}=6 v_{b}=6(8)=48 \tag{1}
\end{align*}
$$

Apply KCL at supernode X as shown;
$\left(v_{a}-v_{b}\right) / 2+v_{a} / 2-3 v_{c}+\left(v_{d}-v_{c}\right) / 2=0$
$\left(v_{a}-8\right) / 2+v_{a} / 2-3 v_{c}+\left(v_{d}-v_{c}\right) / 2=0$
$\Rightarrow \mathrm{v}_{\mathrm{a}}-8+\mathrm{v}_{\mathrm{a}}-6 \mathrm{v}_{\mathrm{c}}+\mathrm{v}_{\mathrm{d}}-\mathrm{v}_{\mathrm{c}}=0$
$\Rightarrow 2 \mathrm{v}_{\mathrm{a}}-7 \mathrm{v}_{\mathrm{c}}+\mathrm{v}_{\mathrm{d}}=8$
Apply KCL at node C

$$
\begin{align*}
-4 & +\left(v_{c}-v_{d}\right) / 2+\left(v_{c}-v_{b}\right) / 2=0 \\
& \Rightarrow-8+v_{c}-v_{d}+v_{c}-v_{b}=0 \\
& \Rightarrow 2 v_{c}-v_{d}=v_{b}+8=16 \ldots . . \tag{3}
\end{align*}
$$

Solving (1),(2) and (3), we get; $\mathrm{v}_{\mathrm{a}}=9.142 \mathrm{~V}, \mathrm{v}_{\mathrm{c}}=-1.142 \mathrm{~V}, \mathrm{v}_{\mathrm{d}}=-18.28 \mathrm{~V}$

$$
\text { and } v_{b}=8 \mathrm{~V} \text { (given) }
$$

Star- delta (Δ) and delta (Δ) to star transformations

Fig25a delta arrangement

Fig.25bStar arrangement
(The positions of Z_{1}, Z_{2} and Z_{3} should be noted. Z_{1} will appear between a and c ; from there, going clockwise we see Z_{2} and Z_{3}. The positions of Z_{a}, Z_{b} and Z_{c} should be noted. Z_{a} connected to vertex-a and centroid. Z_{b} connected to vertex-b and centroid. Z_{c} connected to vertex-c and centroid.)

Consider the above arrangements are equivalent; then;
$Z_{\mathrm{ac}}=\mathrm{Z}_{1}\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right) /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)=\mathrm{Z}_{\mathrm{a}}+\mathrm{Z}_{\mathrm{c}}$
Also,
$Z_{a b}=Z_{2}\left(Z_{3}+Z_{1}\right) /\left(Z_{1}+Z_{2}+Z_{3}\right)=Z_{a}+Z_{b}$
$\left.Z_{b c}=Z_{3(} Z_{1}+Z_{2}\right) /\left(Z_{1}+Z_{2}+Z_{3}\right)=Z_{b}+Z_{c}$
Eqn. (1) -Eqn.(3)
$\left(Z_{1} Z_{2}-Z_{2} Z_{3}\right) /\left(Z_{1}+Z_{2}+Z_{3}\right)=Z_{a}-Z_{b}$ \qquad
Solving (2) and (4), we get, $Z_{a}=Z_{1} Z_{2} /\left(Z_{1}+Z_{2}+Z_{3}\right)$.
Substituting (5) in (2), solving for Z_{a}, we get;
$\mathrm{Z}_{\mathrm{b}}=\mathrm{Z}_{2} \mathrm{Z}_{3} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)$

Substituting (5) in (1), solving for Z_{c}, we get;
$Z_{c}=Z_{1} Z_{3} /\left(Z_{1}+Z_{2}+Z_{3}\right)$
Consider
$Z_{a} Z_{b}+Z_{b} Z_{c}+Z_{a} Z_{c}=\left(Z_{1} Z_{2}^{2} Z_{3}+Z_{1} Z Z_{3}^{2}+Z_{1}^{2} Z_{2} Z_{3}\right) /\left(Z_{1}+Z_{2}+Z_{3}\right)^{2}$
$\mathrm{Z}_{\mathrm{a}} \mathrm{Z}_{\mathrm{b}}+\mathrm{Z}_{\mathrm{b}} \mathrm{Z}_{\mathrm{c}}+\mathrm{Z}_{\mathrm{a}} \mathrm{Z}_{\mathrm{c}}=\mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{Z}_{3} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)$
Eqn(8) / Z_{b} gives
$Z_{1}=\left(Z_{a} Z_{b}+Z_{b} Z_{c}+Z_{a} Z_{c}\right) / Z_{b}$
Eqn(8) $/ Z_{c}$ gives
$\mathrm{Z}_{2}=\left(\mathrm{Z}_{\mathrm{a}} \mathrm{Z}_{\mathrm{b}}+\mathrm{Z}_{\mathrm{b}} \mathrm{Z}_{\mathrm{c}}+\mathrm{Z}_{\mathrm{a}} \mathrm{Z}_{\mathrm{c}}\right) / \mathrm{Z}_{\mathrm{c}}$.
Eqn(8) / Z_{a} gives
$Z_{3}=\left(Z_{a} Z_{b}+Z_{b} Z_{c}+Z_{a} Z_{c}\right) / Z_{a}$.
15) Reduce the network shown in fig. 26 to a single resistor between terminals $\mathrm{a}-\mathrm{b}$.

Fig. 26

Solution:-

From the network above, we observe, 10Ω and 5Ω are in series and also 5Ω and 25Ω are in series. Therefore they are equivalently replaced by
15Ω and 30Ω as shown.
Identifying delta between the vertices a1-b1-c1;
We have $R_{1} \rightarrow R_{2} \rightarrow R_{3}$ as, $5 \Omega \rightarrow 20 \Omega \rightarrow 15 \Omega$

Corresponding star will have;
$R_{a}=R_{1} R_{2} /\left(R_{1}+R_{2}+R_{3}\right)=100 / 40=2.5 \Omega$ (resistance connected to vertex a1)
$R_{b}=R_{2} R_{3} /\left(R_{1}+R_{2}+R_{3}\right)=300 / 40=7.5 \Omega$ (resistance connected to vertex b1)
$R_{c}=R_{1} R_{3} /\left(R_{1}+R_{2}+R_{3}\right)=75 / 40=1.875 \Omega$ (resistance connected to vertex c1)

After replacing delta elements by corresponding star elements;

10Ω and 2.5Ω appear in series. 30Ω and 7.5Ω appear in series. 2Ω and 1.875Ω appear in series. They are replaced by their equivalent resistances.

Identifying star between the vertices a2-b2-c2;
We have $R_{a} \rightarrow R_{b} \rightarrow R_{c}$
as, $12.5 \Omega \rightarrow 37.5 \Omega \rightarrow 3.875 \Omega$

Corresponding delta will have;
$R_{1}=\left(R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}\right) / R_{b}$
$=[(12.5)(37.5)+(37.5)(3.875)+(3.875)(12.5)] / 37.5$
$=662.5 / 37.5=17.66 \Omega$ (resistance connected b / n vertex $a 2$ and $c 2$)
$R_{2}=\left(R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}\right) / R_{c}$
$=662.5 / 3.875=170.96 \Omega$ (resistance connected b / n vertex a 2 and b 2)
$R_{3}=\left(R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}\right) / R_{a}$
$=662.5 / 12.5=53 \Omega$ (resistance connected b / n vertex $b 2$ and $c 2$)
After replacing star elements by corresponding delta elements;
a

$15|\mid 17.66=8.11 \Omega$
$53|\mid 30=19.15 \Omega$

Therefore, $\mathrm{R}_{\mathrm{ab}}=(19.15+8.11)| | 170.96=23.51 \Omega$

Q16) Find the current I in the network shown in fig.27, by reducing the network to contain a source and and a single series impedance.

Fig. 27

Solution:-

Identifying delta between the vertices a1-b1-c1;
We have $Z_{1} \rightarrow Z_{2} \rightarrow Z_{3}$

$$
\text { as, }-j 6 \Omega \rightarrow j 2 \Omega \rightarrow 4 \Omega
$$

Corresponding star will have;
$Z_{a}=Z_{1} Z_{2} /\left(Z_{1}+Z_{2}+Z_{3}\right)=(-j 6)(j 2) /(4-j 4)=1.5+j 1.5 \Omega$
(Impedance connected to vertex a1)
$Z_{b}=Z_{2} Z_{3} /\left(Z_{1}+Z_{2}+Z_{3}\right)=(j 2)(4) /(4-j 4)=-1+j \Omega$
(Impedance connected to vertex b1)
$Z_{c}=Z_{1} Z_{3} /\left(Z_{1}+Z_{2}+Z_{3}\right)=(-j 6)(4) /(4-j 4)=3-j 3 \Omega$
(Impedance connected to vertex c1)

After replacing delta elements by corresponding star elements;

The series impedance are replaced by equivalent impedances

$(6-\mathrm{j} 3) / /(4+\mathrm{j})=2.711-\mathrm{j} 0.057 \Omega$

The single series impedance value,$Z=(3.5+j 4.5)+(2.711-j 0.057)$

$$
Z=6.211+j 4.443 \Omega
$$

Therefore, $\mathrm{I}=100 / \mathrm{Z}=100 /(6.211+\mathrm{j} 4.443)=13.09 \mathrm{~L}-35.57^{\circ} \mathrm{A}$

Additional Problems and Solutions

1) Using source transform, find the power delivered by the 50 V source in the circuit shown:-

Solution: - Using source transformation for the pair V2 and R2, we get,

Adding the parallel current sources and obtaining equivalent resistance of R3 and R2, we have,

Converting the current source back to voltage source,

If I is the current in the circuit, $I=\frac{50-16}{6.2}=5.48 \mathrm{~A}$
Therefore Power delivered by 50V source is $P=I \times 50=5.48 \times 50=274.19 \mathrm{~W}$.
2) Find the current through 4Ω in the network shown:

Solution: - Applying KVL to mesh 1 (mesh with i_{1})

$$
\begin{aligned}
& 5 i_{1}+2 j\left(i_{1}-i_{2}\right)-50=0 \\
& \Rightarrow(5+2 j) i_{1}-(2 j) i_{2}=50
\end{aligned}
$$

Applying KVL to mesh 2
$4 i_{2}-2 j\left(i_{2}-i_{3}\right)+2 j\left(i_{2}-i_{1}\right)=0$
$\Rightarrow(-2 j) i_{1}+(4) i_{2}+2 j\left(i_{2}-i_{1}\right)=0$
Applying KVL to mesh 3

$$
\begin{aligned}
& (2 j) i_{3}+\left(26.25-\quad-(2 j)\left(i_{3}-i_{2}\right)=0\right. \\
& \Rightarrow(2-2 j) i_{3}+(2 j) i_{2}=(26.25-=-10.39+(24.12) j
\end{aligned}
$$

Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5+2 j & -2 j & 0 \\
-2 j & 4 & j-2 \\
0 & 2 j & 2-2 j
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
50 \\
0 \\
-10.39+24.12 j
\end{array}\right]} \\
& \Delta=\left|\begin{array}{ccc}
5+2 j & -2 j & 0 \\
-2 j & 4 & 2 j \\
0 & 2 j & 2-2 j
\end{array}\right|=84-24 j \\
& \Delta i_{2}=\left|\begin{array}{ccc}
5+2 j & 50 & 0 \\
-2 j & 0 & 2 j \\
0 & -10.39+24.12 j & 2-2 j
\end{array}\right|=399.64+400.38 j
\end{aligned}
$$

$i_{2}=\frac{\Delta i_{2}}{\Delta}=6.47$
A
3) Find the value of V 2 if the current through 4Ω is zero.
$50\left\llcorner 0^{\circ} \mathrm{V}\right.$

Solution:- Given $i_{2}=0$
Applying KVL to mesh 3 (mesh with i_{3}), we get
$2 i_{3}+V 2-2 j\left(i_{3}\right)=0$
$\Rightarrow \mathrm{V} 2=(-2+2 \mathrm{j}) i_{3}$
Applying KVL to mesh 2,

$$
\begin{aligned}
& 4 i_{2}-2 j\left(i_{2}-i_{3}\right)+2 j\left(i_{2}-i_{1}\right)=0 \\
& \quad \Longrightarrow i_{3}=i_{1}
\end{aligned}
$$

Applying KVL to mesh 1 ,
$5 i_{1}+2 j\left(i_{1}\right)=50$
$\Rightarrow i_{1}=9.28 \angle-21.8^{\circ} \mathrm{A}=i_{3}$
Therefore, $\mathrm{V} 2=\boldsymbol{i}_{\mathbf{3}}(-\mathbf{2}+\mathbf{2 j})=\mathbf{2 6 . 2 6} \angle \mathbf{1 1 3 . 1 9}{ }^{\circ} \mathrm{V}$
4) Find V_{x} using mesh analysis for the circuit shown

Solution: - From the circuit $V_{x}=-2 i_{2}$
Applying concept of super mesh, $i_{2}-i_{1}=3 \angle-90^{\circ}$
Therefore, $i_{1}=-3 \angle-90^{\circ}+i_{2}$
Remove the arm of the current source and apply kvl,

$$
\begin{aligned}
& \quad(2 j) i_{1}-V_{x}-(3 j)\left(i_{2}-i_{3}\right)-5 \angle 45^{\circ}=0 \\
& \Rightarrow(2-j) i_{2}+(3 j) i_{3}=9.535+j 3.535
\end{aligned}
$$

Applying KVL to mesh with i_{3}

$$
(3-3 j) i_{3}+(3 j) i_{2}=-2
$$

Therefore $\Delta=\left|\begin{array}{cc}2-j & j 3 \\ j 3 & 3-j 3\end{array}\right|=12-9 j$
$\Delta i_{2}=\left|\begin{array}{cc}9.535+j 3.535 & j 3 \\ -2 & 3-j 3\end{array}\right|=39.21-j 12$
$i_{2}=\frac{\Delta i_{2}}{\Delta}=2.73 \angle 19.85^{\circ} \mathrm{A}$
$V_{x}=-2\left(2.73 \angle 19.85^{\circ}\right) \mathrm{v}$
Therefore, $V_{x}=5.49 \angle-160.15^{\circ} \mathrm{V}$
5) Find V_{x} and I_{x} in the circuit shown using mesh analysis

Solution: - From the circuit $V_{x}=2\left(I_{x}-i_{3}\right) \ldots$. (1)
Also from the circuit $i_{2}-I_{x}=3 \ldots \ldots$. (2); $i_{3}-i_{2}=0.25 V_{x} \ldots \ldots$.
Substituting equations 1 and 2 in 3 , we get
$6\left(i_{3}-I_{x}\right)=12 \Rightarrow i_{3}-I_{x}=2$.
Removing the arm containing common current source and applying KVL, we get
$14 I_{x}+5 i_{3}=50$.
Solving equations 4 and 5, we get $\boldsymbol{I}_{\boldsymbol{x}}=\mathbf{2 . 1} \boldsymbol{A}$
Therefore, $\boldsymbol{V}_{\boldsymbol{x}}=-\mathbf{4 V}$.
6) Use node analysis to find V_{0} in the circuit shown below

From the circuit,

$$
V_{0}=V_{3} ; V_{0}-V_{2}=12 V---(1)
$$

Applying KCL to super node X,

$$
\begin{aligned}
& \Rightarrow \frac{V_{2}}{j 2}+\frac{V_{2}-V_{1}}{1}+\frac{V_{0}-V_{1}}{1}+\frac{V_{0}}{-j 4}=0 \\
& \Rightarrow \frac{-j V_{2}}{2}+V_{2}-V_{1}+V_{0}-V_{1}+\frac{j V_{0}}{4}=0 \\
& \Rightarrow-2 j V_{2}+4 V_{2}-4 V_{1}+4 V_{0}-4 V_{1}+j V_{0}=0
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow(4+j) V_{0}-8 V_{1}+(4-j 2)\left(V_{0}-12\right)=0(\text { From (1)) } \\
& \Rightarrow 4 V_{0}+j V_{0}-8 V_{1}+4 V_{0}-j 2 V_{0}-48+j 24=0 \\
& \Rightarrow(8-j) V_{0}-8 V_{1}=48-j 24------(2) \tag{2}
\end{align*}
$$

Applying KCL at V_{1},

$$
\begin{align*}
& \Rightarrow \frac{V_{1}}{2}+\frac{V_{1}-V_{0}}{1}+\frac{V_{1}-V_{2}}{1}=0 \\
& \Rightarrow V_{1}+2 V_{2}-2 V_{0}+2 V_{1}-2 V_{2}=0 \\
& \Rightarrow-2 V_{0}+5 V_{1}-2 V_{2}=0 \\
& \Rightarrow-2 V_{0}+5 V_{1}-2\left(V_{0}-12\right)=0 \\
& \Rightarrow-4 V_{0}+5 V_{1}=-24---------(3) \tag{3}
\end{align*}
$$

Using Cramer's rule,

$$
\begin{aligned}
& \Delta=\left|\begin{array}{cc}
8-j & -8 \\
-4 & 5
\end{array}\right| \\
& \Delta=5(8-j)-32 \\
& \Delta=-5 j+8 \\
& \Delta V_{0}=\left|\begin{array}{cc}
48-j 24 & -8 \\
-24 & 5
\end{array}\right| \\
& \Delta V_{0}=(48-j 24) 5-192
\end{aligned}
$$

Δ
$V_{0}=-j \mathrm{H}_{2} 2 \theta=\frac{\mathrm{A}_{\Delta}}{\Delta} 48$
$\therefore V_{0}=13.69 \mathrm{~V} @-36.19^{\circ}$
W.K.T,
7) Find the equivalent resistance between the terminals X and Y

Solution:-
Star 1:- $\quad R_{a}=2 ; R_{b}=3 ; R_{c}=4 ;$
Corresponding Delta will have,
$R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{b}}$
$\therefore R_{1}=8.66 \Omega$
Similarly,
$R_{2}=\frac{26}{4}=6.5 \Omega$
$R_{3}=\frac{26}{3}=13 \Omega$
Now consider star 2:- $\quad R_{a}=5 ; R_{b}=6 ; R_{c}=7$;
Corresponding Delta will have,
$R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{b}}$
$\therefore R_{1}=17.8 \Omega$
Similarly,
$R_{2}=\frac{107}{7}=15.28 \Omega$

$$
R_{3}=\frac{107}{5}=21.4 \Omega
$$

This circuit can be reduced now using parallel and series combination of resistors as show below.

Therefore the equivalent resistance between X \& $\mathrm{Y}=3.53 \Omega$
8) Determine the equivalent resistance between the terminals X \& Y

Solution:
Consider the Delta $R_{1}=8 ; R_{2}=5 ; R_{3}=4$;
It can be replaced with the circuit shown below

Where, $R_{a}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}$
$\therefore R_{a}=2.35 \Omega$

Similarly,
$R_{b}=1.17 \Omega$
$R_{c}=1.88 \Omega$
The above circuit can be written as,

Consider the Delta, $R_{1}=6 ; R_{2}=5.17 ; R_{3}=5.35$;
$\therefore R_{a}=1.877 \Omega$
$\therefore R_{b}=1.674 \Omega$
$\therefore R_{c}=1.94 \Omega$

X

Y.

Therefore the equivalent resistance between $\mathrm{X} \& \mathrm{Y}=4.22 \Omega$

Source Shifting:

(i) Voltage Source Shifting:-

The above circuit can be written as,

Which is equivalent to,

(ii) Current Source Shifting:-

The above circuit can be redrawn as,

Problems on Source Shifting \& Source Transformation:-

1) Reduce the network shown to a single voltage source in series with a resistance using source shifting and source transformation.

Solution:-

Use Source shifting property on both the sources and rewrite the circuit a shown below 45 A

Now using Source transformation we get,

After simplifying the above circuit and applying Source transformation again, we get,

60 V

Which can be further simplified using Source transformation yet again,

15Ω

2) Find the voltage across the capacitor of 20Ω reactance of the network. 20 V

Solution:- Using Source Transformation,

From the above circuit,
$I_{c}=\frac{(-j 1.5)(-j 6.67)}{(-j 26.67)}$
$\therefore I_{c}=-j(0.375) A$
$\therefore V_{c}=I_{c}(-j 20)$
$\therefore V_{c}=-7.5 \mathrm{~V}$

Syllabus:-

Module - 2

Network Theorems: Superposition, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem

Unitly \rightarrow Thevinins therom
\rightarrow Nortorin theorem.
\rightarrow Maximon power truncter therem.
Thevinn theorem
\rightarrow Any Linear, ative, bilateral Now twith two outpud terminals $A B$ ar shown in fig!. Can be repronted by ancquvalent voltage source $V_{\text {th }}$ in surics with. an equvalent impedane: $Z_{\text {in }}$ ble the terminals $A-B$

Nortori theorml.
Tny linear bilatard, artive slew with two output femmal Aand B as shown in tig. Can be represented tíy an equivetint Eument Source I_{N} is parallel with an equivalert impdance Z_{N} blw the teminals $A B$ as int
 as shown in tig2.

fig1.
fig2. Thewinnequgadent.. Nlw. whore I_{N} is an Notoris equivalent Curnht whith is the d Erait Curnt through $A B$, and Z_{N} in Nortong inp.is F. (Zh) which in the cpurabint inpectanie measuned -aumenthe: opn cffed terminaln with all the

where $V_{t h}$ is the The vinins voltage whith in the open ef voltoge measured acroin the ferminals $A B$: and. which in the
Zth in the thevinis equivalent impedance. whic aperined aerom the open ched. total impedance mestemal Sourcer st to terminal? $A B$ with allthe internal Sourcen of to T.m. [volteg souru (SC), curnt soure (OC)]..
(A) Cavs

Dat se Thevine and vanton guvadent acden AB.

(2)

$$
\stackrel{a}{\sin \overbrace{L}} 10.64
$$

$$
\begin{aligned}
& \text { Nodal } \\
& -I+\frac{6}{100}+\frac{\varphi+206}{250}=0 \\
& 6=x_{1} \\
& -\frac{v}{100}+\frac{v}{20}+\frac{20 v}{250}=I \\
& \Rightarrow \frac{v}{I}=B_{i h}=\frac{1}{\frac{1}{100}+\frac{21}{250}}=1006 \mathrm{~V} \text {. } \\
& 1 \\
& \because \because \\
& v_{\text {th }}=0 \mathrm{~W} ;{R_{N}}=0 A \quad I_{\text {h }}=\frac{V}{2} \\
& V_{x}-V_{y}=2 i_{a} \text {. and } i_{a}=\frac{V_{y}}{100} \ldots \\
& v_{x}-V_{y}=2\left(\frac{V_{y}}{100}\right) \leftarrow \text { (1) } \\
& V=\left[\frac{1}{50}+1\right] v_{y}=\frac{51}{50} v_{y} \\
& 100 i_{a}+2 i_{a}-80 i_{b}=0 \Rightarrow \log ^{2} a=800^{\circ} b \text {. }
\end{aligned}
$$

Step) : fond $v_{\text {th }}$..

$$
\begin{aligned}
V_{x} & \doteq V_{2 n}=I_{2 n} \cdot 2=\left(\frac{v-0}{3+2}\right) \cdot 2 \\
& \therefore \quad V_{x}=\frac{2}{5} v
\end{aligned}
$$

\Rightarrow noodal

$$
\begin{aligned}
& \frac{v}{5}-10+\frac{v-v_{t h}}{5}=0 \\
& 2 v-v_{t h}=50^{-}-(1)
\end{aligned}
$$

\Rightarrow Noolad $\frac{v_{k h}-y}{5}-\frac{v_{x}}{4}=0$
$\therefore \frac{v_{\text {th }}-v}{5}-\frac{2 v}{5 \times x}=0$

$$
5^{-1} v_{f_{h}}-S^{\prime 1} y-10^{2} u_{2} 0
$$

$$
\begin{aligned}
& v=\nu_{3} u_{t h} \rightarrow 2 \\
& v-\frac{2}{3} u_{t h}=0 \rightarrow 20
\end{aligned}
$$

solvy (1) (2a) She 150 volth

kilea

$$
\frac{v}{5}-10+\frac{v}{5}=0
$$

$$
V=25) \text { uolt } \quad V_{x}=10101 \mathrm{in}
$$

$$
\begin{aligned}
I_{c}=5+\frac{v_{x}}{4} & =5+\frac{x^{5}}{Y_{2}} \\
& =15 / 2^{A}
\end{aligned}
$$

$$
R_{t h}=\frac{V_{t h}}{I_{c}}=\frac{150}{(1572)}=20.02
$$

isov. $\begin{array}{r}102 \\ \square\end{array}$

(B)

Det the thevenins + Noitons quevered acren the P_{L}.
sotur-

$$
\delta_{f_{h}}=\frac{v_{\phi_{h}}}{J_{N}}=\frac{v_{t_{h}}}{J_{s c}}
$$

Step $\quad \therefore \quad V_{x}=2$.

$10 i_{1}-20 i_{1}-40 i_{1}+50=0$

$$
\text { ISE = } \quad{ }^{9}=\frac{0-50}{40}=-5 / 4 A
$$

$$
V_{\text {th }}=40(-1)+50
$$

$$
\begin{aligned}
& 10 i_{1}-20\left(I_{s c}+i_{1}\right)-40\left(i_{1}\right)-50=0 \\
& 10(-5 / 4)-20\left(I_{s c}-5 / 4\right)-40(-5 / 4)-50=0 \\
& -\frac{50}{4}-20 I_{s c}+\frac{100}{4}+\frac{200}{4}-50=0 \\
& \therefore I_{s c}=5 / 8=0.625 \text { Armpri? }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v-10 i 1}{2}+I_{s c}+\frac{v-50}{40}=0 \ldots \\
& O_{1}=\frac{v-50}{} \quad I_{s C}=5 / 8=0.62 \times \quad \text { Ampr? }
\end{aligned}
$$

Sep $\sqrt{\text { ov, }}$

$$
e_{i_{1}}=\frac{V-50}{40}
$$

$$
f_{f_{n}}=\frac{V_{\text {th }}}{I_{s c}}=\frac{10}{5 / 8}=\frac{80}{5}=16 \mathrm{ir}
$$

$$
v_{1}-20 \mathrm{k}(0.01) v_{1}=100
$$

$$
\left.\begin{array}{rl}
\varphi_{1}=\frac{100}{[1-20 t 10.01)]} & =-0.502516001 / \mathrm{h} \\
v_{1} & =v_{t h}
\end{array}=-502.512 \mathrm{~m} / 01+5\right)
$$

Canci

$$
V_{t h}=I_{s c}=0 \quad \bar{B}_{t h}=(1+30) \backsim
$$

(2)

$$
\begin{aligned}
& T_{\text {se }}=\frac{4}{2 k+3 k}=\frac{4}{54}=\frac{4}{5} \mathrm{~mA} \\
& R_{\text {th }}=\frac{V_{\text {th }}}{I_{N N}}=\frac{8}{(415 m)}=10 k u
\end{aligned}
$$

(a)

MISSION
Provide quality and contemporary education, in the domain of Electronics and communication and related fields, which enable collaborative ventures with industries and research organizations. Emphasis laid on creating innovative teaching-learning processes that motivate self-learning. by imparting quality education embedded with discipline \& national honor.

VISION
To create a rich intellectual potential implanted with multidisciplinary knowledge, human values and professional ethics among the aspirant of becoming Engineers and technologies, so as to unlock their imagination and discover their potential.

OBJECTIVES

1. To impart good technical knowledge to the students.
2. To produce Excellent Engineers in Electronics \& Communication fields.
3. To fulfil the needs of the society in the various fields related to Electronics and Communication engineering.
4. To bring post-graduate program in the diverse field of electronics and , communication Engineering:
5. To upgrade the facilities in Research \& Development Centre of the department with the use of modern aids.
6. To organize training programs / workshops for upgrading staff performance.
7. To establish Industry-Institure Interaction.
8. To publish technical papers in National / International journals and conferences.

GOALS (Short Term) :

1. Modernizing the Laboratories with new software \& state-of-the art hardware in tune with the latest technological developments.
2. To obtain Quality certification froman agency of reputed.
3. Teaching Aids: LCD Projector, Smart Boards.
4. Promoting Faculty. Development it Prograṇimes.
5. Conducting the need based training programs for Faculty \& Students.
6. To improve the pass percentage $2-5 \%$ compared to previous year.

GOALS (Long Terni) :

1. To start additional P.G. Programmes in Electonic and Communication engineering discipline.
2. To enter into understanding with globally renowned universities for special programmes in emerging technologies.
3. Promoting Industry - Institute interaction through projects and R \& D work.

 Response being voltage amen the cap actor 6 m . DelJoadol5. star

us

$$
I_{2}=\frac{I x z_{1}}{\left(z_{1}+z_{2}\right)}
$$

the ratio of $\frac{I}{v}=\frac{50190^{\circ}}{14506012200}=0.36431160744$

$$
\begin{aligned}
& \begin{aligned}
& I_{2}=\frac{\left(z_{1}+z_{2}\right)}{5090^{\circ}}[5+35] \\
&\left(5+j 5+2-J_{3}\right)=4885641199.05 \text { Ampanh } \\
&=48.564119 .05
\end{aligned} \\
& U=U_{c}=I_{2}\left(-I_{3}\right)=48544119.65 \times(-93)
\end{aligned}
$$

$$
V=14769 / 29005 \text { volt } n=145.69 \mathrm{L29.05} \text { colo }
$$

Now interclonge the Source 4qusopome.

$$
I_{1}=\frac{I \cdot z_{2}}{z_{1}+z_{2}}
$$

$$
z_{1}=(9+5+j 5)=(7+j 5) u
$$

$$
z_{2}=-j_{3} u
$$

$$
\Psi=\frac{50190^{\circ}[-j 3]}{\left[\frac{7+j 5}{2}-\frac{j_{3}}{7_{2}}\right]}=20.604(-15.945 \text { Amporb }
$$

$$
V_{2}=\Phi_{1} \cdot[5+j 5]=200604(-15945 \times(5+15)
$$

$\therefore v=145 / 29005$ volin?

$$
\begin{aligned}
& \left.\frac{I}{v}=\frac{50\left(90^{\circ}\right.}{145\left(29 \cdot 0^{\circ}\right.}=0.34431 .66 .94<2\right) \\
& g^{4}(0)=q^{\circ}(2)
\end{aligned}
$$

\therefore Queiproity thoorm in vented.
(2) Stakand prove reipmity thorm $(6 m)$ Dec $14 / \tan 15$. Slu rif nootes.
(3) Venty reciprocity theorm for the cbt showning gy.

solu: $\dot{u}=500^{i}<1 p \quad I<0 / f$ (rispome).
5010°

kalea $\quad \frac{v_{a}-500^{\circ}}{1}+\frac{v_{a}}{\left(\rho_{1}\right)}+\frac{v_{a}}{\left(2-j_{1}\right)}=0$

$$
\begin{aligned}
& V_{a}\left[1+\left(j_{1}\right)^{-1}+\left(2-j_{1}\right)^{-1}\right]=5010^{\circ} \\
& V_{a}=\frac{5010^{\circ}}{1.6124(-29.74}=317008 \angle 29.744 \\
& V_{a}=310008\left\lfloor 29.744 \text { polf'n and } \frac{500^{\circ}}{13.8676630}=\frac{6}{2}=\right. \\
& 2000712 \\
& \Rightarrow I=\frac{v_{a}}{\left(2-1_{1}\right)}=\frac{31.008 / 29.744}{\left(2-j_{1}\right) a}=13.867 / 56.30 \text { Arpes }
\end{aligned}
$$

- tow interchange the i/p and o/pon.

$$
z_{2}=1 \| j_{1}=\frac{\rho_{1}}{\left(1+j_{1}\right)}=(005+10.5) n
$$

$$
\begin{aligned}
& Z_{T}=z_{1}+z_{2}=\left(2-j_{1}\right)+(0.5+j 0.5)=(2.5-j 0.5) \lambda \\
& I=\frac{500^{8}}{2 T}=\frac{5018}{(225-50.5)}=19: 6116\left[11.309 \mathrm{Amprit}_{2} \ldots\right. \\
& \begin{array}{l}
I_{2}=I=6 \\
\text { ung BCM } I=\frac{I_{1}\left(\rho_{1}\right)}{\left(1+J_{1}\right)}=\frac{\left(9 \cdot 6 1 1 6 \left(11.309 \times\left(\xi_{1}\right)\right.\right.}{\left(1+J_{1}\right)}
\end{array} \\
& \lambda=13.867 \angle 56.309 \text { Ampast }
\end{aligned}
$$

(4) Stateand prove heciprocity thorem. (3n). Jan 2044 (5m)
solu- repald quation.
(5) Verity queiprocity thoren for the wlw of fio with auporneses.

solu? 5

$$
I_{3}=\frac{I_{2}\left(-J_{10}\right)}{\left(-J_{10}+10\right)}=\frac{3067100.52(-310)}{\left(10-\mathrm{S}_{10}\right)}
$$

$$
I_{3}=2.169157052 \text { Amprin }
$$

$$
\begin{aligned}
& z_{1}=20 \| \int_{10}=(4+18) \Omega \\
& z_{1}+z_{2}=4+18+20=(24+j 8) \Omega \\
& \left(z_{1}+z_{2}\right)\left\|z_{3}=z_{t}=(24+38)\right\|(-310)=\left(4.1379-j_{97}\right. \\
& I_{t}=\frac{20045}{\left(10+z_{4}\right)}=\frac{200145^{\circ}}{(10+401399-9965)} \\
& I_{t}=11.682-17.33
\end{aligned}
$$

$$
\frac{V}{I_{3}}=\frac{200145^{\circ}}{2.169 \angle 57.52}=92.195 \angle-12.52
$$

$$
\begin{align*}
I_{2}= & \frac{I_{1}\left(z_{3}\right)}{\left(z_{1}+z_{2}+z_{3}\right)}=\frac{11.682[79.33(-310)}{24+J_{8}+\left(-S_{10}\right)} \tag{1}\\
& I_{2}=4.8507(174.09
\end{align*}
$$

Now interchaget the itp aind o/pin

$$
\begin{gathered}
I_{3}=\frac{I_{2}\left(S_{10}\right)}{20+I_{10}}=\frac{40880 \cdot(174.09)\left(S_{10}\right)}{20+j 10}=\cdots \\
\\
\quad I_{3}=2 \cdot 169-122047 \cdot \text { Anporn } \\
=20169 \angle 57.52 .
\end{gathered}
$$

(1)

In the Sapapinestion turnent soarce show.in firy the voltege v_{x} interchange the Eument Soarce and pesulting voltage. v_{x}, inthe reciprocity theorm vented? (6 m$)$

$$
I=5490^{\circ} A
$$

sher

$$
\text { if }=5190^{\circ} A \quad \|_{+} v_{x}=u_{x}
$$

Supated quation My to QNo. 1 . Dec-ann 2015

Now interchaget the ilt and of in.

$$
\begin{aligned}
& I_{1}=6 \quad u_{x}=I_{1}(5+35) \quad \text { volto: } \\
& I_{1}=\frac{I z_{2}}{z_{1}+z_{2}}=\frac{5\left(90^{\circ}\left[-9_{2}\right]\right.}{(7+95)-9_{2}}
\end{aligned}
$$

$\Psi_{1}=1.313(-23.198$ Amperih

$$
u_{x}=I_{1}(5+J 5)=1.313\lfloor-23 \cdot 198(5+35)
$$

$$
V_{x}=902841218014 \text { Anporh. }
$$

$$
\frac{I}{U_{x}}=\frac{5190^{\circ}}{9028 \varphi / 218014}=0.5385 / 68 \cdot 19
$$

(pac) $=\varphi^{4}(1)$ ar Guesproch thorm inllented.

$$
\begin{aligned}
& I_{2}=\frac{5\left(90^{\circ}[5+15]\right.}{[5+j 5]+\left[2-j_{2}\right]}=4.642 \angle 111.80 \\
& u_{x}=I_{2}\left(-j_{2}\right)=4.8424171485 .\left(-g_{2}\right)
\end{aligned}
$$

(7) Dt Voltege u_{x} in the nhw shown in fig. Hince usinty hausproity theorm. (6m) Jum ro12.

$$
\begin{aligned}
& I_{1}=\frac{I \cdot z_{2}}{z_{1}+z_{2}} \doteq \frac{10190^{\circ}\left[-J_{3}\right]}{\left[4+3+j_{4}\right]+\left[-J_{3}\right]} \\
& I_{1}=4.2426[-30130 \text { Anporin. } \\
& V_{x}=I_{1}(3+34)=4.2426(-8 \cdot 130 \cdot[3+34] \\
& U_{x}=21.213\left(445^{\circ}\right. \text { vollh }
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=\frac{10190^{\circ}[3+j 4]}{[3+j 4]+[4-33]}=7.07 / 1135^{\circ} \text { Ampron } \\
& V_{x}=I_{2}\left(-\frac{3}{3}\right)=7.0711135^{\circ}(-j 3) \\
& U_{x}=210213 \angle 45^{\circ} \text { volin. }
\end{aligned}
$$

$$
\frac{I}{V_{x}}=\frac{10190^{\circ}}{21.234 i^{\circ}}=0.4714\left[45^{\circ}<(2)\right.
$$

$$
\begin{equation*}
\frac{I}{u_{x}}=\frac{10190^{\circ}}{21021345^{\circ}}=004714145^{\circ} \tag{1}
\end{equation*}
$$

$\varphi^{+}(1)=\varphi^{2}(D) \&$ Quciprochy theorm in Ventid:
(8) Cintyneciproicty theom for the cett shown infig. Decizol2. (6n).

Now nterclange theity and ofin.

Solul- repeated quation. iffir (Qi):
(1) Find i_{x} and trance venty reciprocity theorm for the v/w stown nifig.

solu:-
ifp $v=10$ volin of $\hat{\imath}_{x}=q_{c}$
(6)

Lopi

$$
\begin{align*}
& -4 i_{1}-10\left(i_{1}-i_{2}\right)-8\left(i_{1}-i_{3}\right)=0 \\
& -4 i_{1}-10 i_{1}+10 i_{2}-8 \bar{i}_{1}+8 i_{3}=0 \\
& -22 i_{1}+10 i_{2}+8 i_{3}=0 \ll \tag{1}
\end{align*}
$$

Lop 2

$$
\begin{gather*}
-10\left(i_{2}-i_{1}\right)-6 i_{2}-2\left(i_{2}-i_{3}\right)=0 \\
-10 i_{2}+10 i_{1}-6 i_{2}-2 i_{2}+2 i_{3}=0 \\
10 i_{1}-18 i_{2}+2 i_{3}=0 \tag{2}
\end{gather*}
$$

$\log 3$

$$
\begin{aligned}
& 10-8\left(i_{3}-i_{1}\right)-2\left(i_{3}-i_{2}\right)=0 \\
& 10=8\left(i_{3}-i_{1}\right)+2\left(i_{3}-i_{2}\right) \\
& 10=8 i_{3}-8 i_{1}+2 i_{3}-2 i_{2} \\
& -8 i_{1}-2 i_{1}+10 i_{3}=10<8
\end{aligned}
$$

$$
\hat{l}_{2}=0.8857 \text { Amprin }
$$

$$
i_{3}=201142 \text { Ampsich }
$$

$$
d_{1} i_{x}=\left(l_{1}-\dot{l}_{2}\right)=10171-0.8857=0.2853 \text { (Anpaic }
$$

$$
\begin{equation*}
\frac{6}{i x}=\frac{10}{0.2453}=35.05 \tag{1}
\end{equation*}
$$

Now interchange the position's of if ando ${ }^{\text {He }}$.

$$
l_{1}=0.428 \mathrm{~A}, \quad l_{2}=-0.2857 \mathrm{~A}, l_{3}=0.2857 \mathrm{~A}
$$

$$
i_{3}=l_{a}=0.2853 A_{m p a}
$$

$$
\begin{equation*}
\frac{6}{i_{3}}=\frac{10}{0.2853}=35.05 . \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& -4 i_{1}-10\left(i_{1}-i_{2}\right)+10-8\left(i_{1}-i_{3}\right)=0 \\
& -4 i_{1}-10 i_{1}+10 i_{2}+10-8 i_{1}+8 i_{3}=0
\end{aligned}
$$

$$
\begin{equation*}
-22 i_{1}+10 i_{2}+8 i_{3}=-10 \tag{1}
\end{equation*}
$$

Lop 2

$$
\begin{align*}
& -10-10\left(i_{2}-i_{1}\right)-6 i_{2}-2\left(i_{2}-i_{3}\right)=0 \\
& -10-10 i_{2}+10 i_{1}-6 i_{2}-2 i_{2}+2 i_{3}=0 \\
& 10 i_{1}-18 i_{2}+2 i_{3}=10<\text { (2) } \tag{2}
\end{align*}
$$

Lop 3

$$
\begin{align*}
& -8\left(i_{3}-i_{1}\right)-2\left(i_{3}-i_{2}\right)=0 \\
& -8 i_{3}+8 i_{1}-2 i_{3}+2 i_{2}=0 \\
& 8 i_{1}+2 i_{2}-10 i_{3}=0<
\end{align*}
$$

Solving $Q^{-1}(1),(2)(3)$
(10) State and explain the Queiprocity theorem. (5m) $\operatorname{Jan} 20133$ solu" xpeated quation.

(Q). Find the Current throngh the Lood impedane Z_{L} forthe whw Shown infig, using imillmonis thiown. 6 m . (Jem2015).

solet

- $I_{L}=\frac{V_{L}}{\left(Z_{L}+l_{L / 2}\right)}$ Ampain

$$
\begin{aligned}
& V_{L}=\frac{1(2)^{-1}+(-4)(2)^{-1}+(-8)(3)^{-1}+(24)\left(4_{4}\right.}{2^{-1}+2^{-1}+3^{-1}+4^{-1}} \\
& V_{2}=\mid .15789 \\
& R_{1}=\frac{1}{\varphi_{1}+Y_{2}+\varphi_{3}+\varphi_{4}}=\frac{1}{\left(2^{-1}+2^{-1}+3^{-1}+4^{-1}\right)} \\
& \quad R_{2}=0.6315
\end{aligned}
$$

(3) Forthe ct shown in fig. find Ciunnt "I" using millmaninthorem.

SO/4

$$
\begin{aligned}
& V_{2}=\frac{V_{1} y_{1}+y_{2} y_{2}+y_{3} y_{3}}{y_{1}+y_{2}+y_{3}} \\
& V_{2}=\frac{415(10)^{-1}+415\left(120 \cdot(310)^{-1}+415\left(240(-310)^{-1}\right.\right.}{(10)^{-1}+(310)^{-1}+(-100)^{-1}} \\
& V_{2}=1133.8010^{1} 601 t^{\prime \prime} \\
& Z_{2}=\frac{1}{y_{1}+y_{2}+y_{3}}=\frac{1}{10^{-1}+(j 0)^{-1}+(-10)^{-1}}=10 n
\end{aligned}
$$

$$
R_{L_{\text {in }}}=\frac{1}{y_{1}+y_{2}}=\frac{1}{5^{-1}+3^{-1}}
$$

$$
R_{L}=10875
$$

$$
\begin{aligned}
& v_{2}=\frac{v_{1} y_{1}+y_{2} y_{2}}{y_{1}+y_{2}} \\
& V_{2}=\frac{210^{0}(5)^{-1}+490(3)^{-1} \cdots}{5^{-1}+3^{-1}} \\
& V_{2}=102920173 \cdot 30 \text { volfom }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } I_{1}=\frac{210^{\circ}-1.392(73.3}{5}=0.4161-390809 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
I_{1}=\frac{2 E_{1}-V_{L(w) / 5)}}{G_{1}}=\frac{218982(73030 \mathrm{llollh}}{\overline{5}-1.8982 / 7330 \mathrm{C}}
\end{aligned}
\end{aligned}
$$

(5) Using millmans theoren tind the cument through 10 n

(6) Find the hoad. Eugrent I in the cot of tig by using millman' thiorem. (6 m) JIJ 2013. 13

$$
\text { Jan } 2014
$$

Soluis

C_{2} without had

$$
\begin{aligned}
& V_{2}=\frac{V_{1} y_{1}+V_{2} Y_{2}+V_{3} Y_{3}}{y_{1}+y_{2}+y_{3}} \\
& V_{1}=\frac{22\left(5^{-1}\right)+(48)\left(12^{-1}\right)+12\left(4^{-1}\right)}{5^{-1}+12^{-1}+4!} \\
& V_{2}=21.375
\end{aligned}
$$

$$
R_{2}=\frac{1}{5^{-1}+12^{-1}+4^{-1}}=\frac{1}{y_{1}+y_{2}+y_{3}}=1.875 \lambda
$$

O_{2} जith Load

$$
\begin{aligned}
\text { sdui } V_{2} & =\frac{v_{1} y_{1}+v_{2} y_{2}+y_{3} y_{3}}{y_{1}+y_{2}+y_{3}+y_{2}} \\
V_{2} & =\frac{1(1)^{-1}+2\left(2_{2}^{-1}\right)+3\left(5^{-1}\right)}{1^{-1}+2^{-1}+3^{-1}+10^{-1}}=\left.1.5517 v^{2} 01\right|_{n}
\end{aligned}
$$

$$
I=\frac{V_{1}}{10}=\frac{1.5512}{10}=0.15517 \text { Amperin }
$$

(6.) State and ueplain millmans thowem $\left(\mathrm{OC}_{\mathrm{H}}\right)$ J/52013.
(7) Dt Load Coment In inthe whi shownin figy insing millmon thooren. (6m) June 2012.

Solvi- Comvorf Practial

V_{2} with doad ingren by

$$
\begin{aligned}
& v_{2}=\frac{y_{1} y_{1}+y_{2} y_{2}+y_{3} y_{3}}{y_{1}+y_{2}+y_{3}+y_{2}} \\
& =\frac{1(1)^{-1}+3 \times 2^{-1}+25 \times 5^{-1}}{1^{-1}+2^{-1}+5^{-1}+\left(2+j_{2}\right)^{-1}} \\
& =3.814917 .305^{\circ} \text { voin } \\
& I_{L}=\frac{x_{h}}{\left(2+j_{2}\right)}=\frac{3.8149170300}{(2+j 2)}=1.34871-37.69 \text { Arpan't }
\end{aligned}
$$

Soly: Oeverite the cot
(8) Use millman thiorion to doteminu the voltege V of the ive showniffgiven $L_{K}=2300^{\circ} \mathrm{V}, E_{y}=230-120 \mathrm{~V}$

$$
\begin{equation*}
E_{B}=230 \underline{120} 4 \tag{6m}
\end{equation*}
$$

(9) Using millman's theown find I_{h} though P_{L} for thivko

Solui: V, with Load.

$$
\begin{gathered}
V_{2}=\frac{Y_{1} Y_{1}+Y_{2} y_{2}+Y_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}+Y_{2}} \\
V_{2}=\frac{102^{-1}+20 \times 3^{-1}+30 \times u^{-1}}{2^{-1}+3^{-1}+4^{-1}+10^{-1}} \\
V_{2}=16.197 \text { vol/n } \\
J_{2}=\frac{V_{2}}{10}=1.6197 \text { Ampanh }^{\prime}
\end{gathered}
$$

$I_{n} \oplus G_{n}$

$$
\int_{b}^{G_{n}} \text { where } I=\left[\frac{I_{1} R_{1}+I_{2} R_{2}+\cdots+I_{n} R_{n} n}{R_{1}+R_{2}+R_{3}+\cdot+R_{n}}\right] \cdot A=
$$

$$
\text { and } G=\frac{1}{R_{1}+R_{2}+b_{3}+\cdots+R_{n}} \text {-r }
$$

(10) State and prove milmanis thooim for Comits Sauses in Sorin. (6 m). Jan2013.
Statments if 'n' Practial Curint. Saerm taveng internal Condrutance (O) admittance which con be
Quplaid by a Single cumnt Socire i in prallel with an equiralint condudance (a) atmittance.

3 Suprposition thenem! -
(1) Find V_{x} ' using Supppasition thearm fothe viws sham

Soli:- Step. 164 ating alone made othersame tozeno ie openett all Coment Soure f shat cet theritge sames. ung V.DR

$$
V_{x, 1}=\frac{16}{(20+80)} \times 20=322001 / n
$$

Step 210 voldinatinfalons:

$$
\int_{\substack{200}}^{y_{1_{2}}=-\frac{10}{20+80} \times 20=-2001 n=10}
$$

Stap3:- 3i . farre alone.

$$
I_{\text {zon }}=\frac{3 \times 80}{(20+80)}=2 \cdot 4 \text { Ampin }
$$

$U_{x_{3}}=-20 \times 204=-48 \mathrm{volh}$
Stepe

due to shat cot neolumat plown in $20 n$ quisintor

$$
\therefore Y_{24}=0 \text { volth ung Spi }
$$

$$
\begin{aligned}
V_{x} & =v_{x_{1}}+v_{x_{2}}+v_{x_{3}}+v_{x_{4}} \\
& =3.2-2-48+0=-46.8 \text { vot }
\end{aligned}
$$

- lenfication using reodal authod

kela a
Solvingay (a) and (b).

$$
\begin{aligned}
& \frac{V_{a}-b}{20}+\frac{V_{a}-V_{b}}{10}-1 \cdot 5-3+I_{10}=0 \\
& \left.\quad{ }_{c l a l}=10\right] \text { eolin } \ll \\
& V_{b}-V_{a}=-10
\end{aligned}
$$

bue hop)

$$
\left.\begin{array}{l}
V_{a}-V_{b}=10 \\
20^{-1} V_{a}+80^{-1} V_{b}=3.8
\end{array}\right\} \begin{aligned}
& V_{a}=62.8 \mathrm{ve} \|!n \\
& V_{b}=52.8 \mathrm{vec} \| \cdot \mathrm{c} . .
\end{aligned}
$$

$$
=-\quad . \quad
$$

$$
16-v_{x}-v_{a}=0
$$

$$
v_{x}=16-v_{a}=16-62.8=\frac{-4608 v_{0} / \mathrm{m}}{1.6}
$$

$$
4 x=-46.8 \text { volht }
$$

thace venfice
klal "
(2) Find the voltege ' V ' acrom 3Ω resntor using. Supurparition theominfor the crewit shown in the fig.

Step3. 2A currest soune a atin alone. $V \Rightarrow V_{x_{3}}$

Soly. stepi. 18 v some alove $\quad V \Rightarrow V_{x}$

capgsp

$$
\begin{aligned}
& v_{x_{3}}=-I_{3} \times 3= \\
& \stackrel{\text { axppp }}{ }=V_{x_{1}}+v_{x_{2}}+v_{x_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& y=v_{x_{1}}+x_{2} \\
&=3+4-2=5 \text { voll } \\
&=
\end{aligned}
$$

$$
\text { Sex2 } 60
$$

$$
\begin{aligned}
& 2 n+3=3\left(i_{3}-i_{2}\right) \text { volt? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vantid tope } \\
& 2\binom{183}{1)^{2}}^{2} \\
& \begin{array}{l}
\bar{i}_{2} \quad Y_{x_{2}}=\frac{6}{(1.5+3)} \times 3 \\
Y_{x_{2}}=4 \text { uol }
\end{array} \\
& v \Rightarrow V_{2} \\
& 6 / 2=105 x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
6+2\left(i_{1}-i_{2}\right)+3\left(i_{1}-i_{3}\right) & =0 \\
2 i_{1}-i_{2}+3 i_{1}-3 i_{3}=-6 & \Rightarrow \begin{array}{l}
5 i_{1}-2 i_{2}-3 i_{3}=-6<(8) \\
5 i_{1}-2 i_{2}=0<0
\end{array}
\end{aligned}
\end{aligned}
$$

(o)

Sdis. Stepl. she source actingalone.

$$
\begin{aligned}
& \frac{v_{a}}{6}+\frac{v_{a}-18}{2}+\frac{v_{c-18}}{3}-2=0 \\
& {\left[6^{-1}+2^{-1}\right] v_{a}+3^{-1} v_{c}=\left(\frac{18}{2}+\frac{18}{3}+2\right)}
\end{aligned}
$$

$$
v=v_{b}-v_{c}=18-13=5 \text { volln verifte }
$$

Step2. 10v ating alone.

$$
U_{a}=19 \text { volin, } \quad U_{c}=13 \mathrm{volin}
$$

$$
I_{x_{2}}=-\left[\frac{2.7227 \times 2}{1+2}\right]=\frac{-1.1818 \mathrm{~A}}{}
$$

Step3. IA source atrifalone
(3) Uge suparposition theorm to find I_{n} of the ahes shown infigg.

$$
\begin{aligned}
& \frac{v_{a}}{1}+\frac{v_{a}}{2}+\frac{v_{a}}{3}-1=0 \\
& v_{a}=0.5454 .0014 n \\
& I_{x_{3}}=\frac{-v_{a}}{t}=0.0 .5454 \text { Amarb: }
\end{aligned}
$$

$$
\begin{aligned}
T_{x} & =I_{x_{1}}+i_{x_{2}}+8 x_{3} \\
& =2.2752-1.1818-0.5454
\end{aligned}
$$

$$
I_{x}=0.5470 \text { Amper'?. }
$$

(4) Colulate the cument in the 6Ω resintor of the cet shawn in tig using principle of supupartion.
(6 m) J/J 2014.

Solu:- Stepl: 184 Somce arting alone

$$
\begin{aligned}
& 18-I_{r_{1}}-2 I_{x_{1}}-6 I_{x_{y}}=0 \\
& 18=+9 I_{x_{1}} \Rightarrow I_{x_{y}}=2 \text { Amparin. }
\end{aligned}
$$

Step $3 A$. Soure acting alove.

kde a.

$$
\begin{aligned}
& \frac{V_{2}}{1}-3+\frac{V_{x}+2 V_{x}}{6}=0 \Rightarrow V_{x}=2 \text { volth } \\
& I_{x_{2}}=\frac{V_{x}+2 v_{x}}{6}=\frac{2+4}{6}=1 A
\end{aligned}
$$

ang S.PT

$$
I_{x}=I_{x_{1}}+I_{x_{2}}=2+1=3 \mathrm{~A}
$$

Vatication

$$
\begin{align*}
& \frac{v_{a}-18}{1}-3+\frac{v_{a}+2 v_{x}}{6} \doteq 0 \\
& {\left[1+6^{-1}\right] v_{a}+\left(\frac{1}{3}\right) v_{x}=(3+18)<(0} \tag{0}\\
& 18+v_{x}-v_{a}=0 \\
& \Rightarrow-v_{a}+v_{x}=-18<(2) \tag{2}\\
& v_{a}=18 v_{0} k_{n} \quad v_{x}=0 . v_{14} .
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow-v_{a}+v_{x}=-18 \\
& V_{a}=18 \text { velhn } \\
& \Rightarrow \quad V_{x}=0.01 \mathrm{kn} . \\
& \Rightarrow I_{x}=\frac{v_{a}+2 v_{x}}{6}=\frac{18+0}{6}=3 A .
\end{aligned}
$$

vertred.
（5）Find the Current．through $2 n$ resistor in the nu shown in fig．
using superposition the using super position theorem．

$$
v_{a}=1 v \leftarrow(1) v_{b}-v_{c}=1 v \leftarrow(2)
$$

Step 3

$$
I=\pi_{1}+x_{2}+x_{3}=0.501+0.5=0, \mathrm{~A}
$$

PROGRAMME EDUCATIONAL OBJECTIVES（PEQs）
PEO1 ：To educate to be a Electronics and Communication Engineering graduate with an ability to pursue higher studies in blobal scenario．
PEO2 ：To educate the learners to be highly competent Electronics and Communication Engineer＇s with in－depth knowledge in the engineering fundamentals and chosen domain．
PEO3 ：To impart－the knowledge to the students to be able to function in a team with varied professional background or fields of Engineering and Technology to be able to meet the challenges of competitive field．
PEO4：To enable the Electronics and communication engineering graduates in a truly professional way with ethical approach in solving and serving the needs of the society with humane approach．
PEO5：To motivate the Electronic and communication engineering graduates to keep abreast with modern ever changing engineering and techonologies and applications to evolve with innovative solutions and to build a carrier of their own with leader ship qualities．

が一
PROGRAMME OUTCOMES．
a）An ability to apply knowledge of mathematics，science，and engineering，
b）An ability to design and conduct experiments，as well as to analyze and interpret data，
c）An ability to design a system，components，or process to meet desired needs within realistic constraints such as economic，environmental，social，political，ethical，health and safety，manufacturability，and sustainability，
d）An ability to function on multidisciplinary teams，
e）An ability to identify，formulate，and solve engineering problems，
f）An understanding of professional and ethical responsibility，
g）An ability to communicate effectively，
h）The board education necessary to understand the impact of engineering solutions in a global，economic，environmental，and societal context，
i）A recognition of the need for and and ability to engage in life－long learning，
j）A knowledge of contemporary issues，and
k）An ability to use the techniques，skills，and modern engineering tools necessary for engineering practice．．．
．1）Knowledge of advanced mathematics，including differential equations，linear algebra， complex variables，an probability and statistics，including applications to electronics and communication engineering．

Theorem 1: Norton's Theorem

Statement:

Norton's Theorem states that a linear two terminal network can be replaced by an equivalent circuit consisting of a current I_{N} in parallel with a resistor R_{N}, where

- R_{N} is the equivalent resistance at the terminals when the independent sources are turned off
- I_{N} is short circuit current through the terminals.

If the circuit consists of the dependent sources the Norton's resistance has to be found out as $R_{N}=$ Voc / Isc

There can be two types of problems,

1. To find the Norton's equivalent circuit across the open circuit terminals
2. To find a voltage or a current in the circuit by Norton's Theorem.

Problems:
P1. Find the Norton's equivalent circuit across the terminals $a-b$

Steps to find out the Norton's Resistance R_{N} :
Step 1: Turn off the independent sources
(open-circuit the current source and short-circuit the voltage source)

Step 2: Find the equivalent resistance looking into the open circuit terminals
$R_{N}=12 \times 4 / 12+4$
$\mathbf{R}_{\mathrm{N}}=\mathbf{3 \Omega}$
Steps to find out the Norton's Current $\mathrm{I}_{\underline{N}}$ (Short circuit current):
Step 1: Short circuit the open circuit terminals and mark the $I_{\text {sc }}$ as shown.
Step 2: Find the short circuit current by a suitable technique

By Node Analysis:

Applying KCL at node a :

$$
\frac{V a-24}{4}+\frac{V a}{12}+I s c=3
$$

Substituting $\mathrm{Va}=0 \mathrm{~V}$ in the above equation implies
$\mathrm{Isc}=9 \mathrm{~A}$

Therefore the Norton's equivalent circuit across terminals a-b is

P2. Find I_{0} in the network shown, using Norton's Theorem

Solution:
Step 1: Separate the branch through which I_{0} is flowing
Step 2: Find the Norton's equivalent network across the open circuit terminals
Step 3: Connect the branch separated, back to the Norton's equivalent circuit to find I_{0}

Step 1: Separate the branch through which I ${ }_{0}$ is flowing

Step 2: Find the Norton's equivalent network across the open circuit terminals a-b

Find the R_{N} across the open circuit terminals a-b by short-circuiting12 V source

$\mathrm{R}_{\mathrm{N}}=[(6 \mathrm{~K}| | 2 \mathrm{~K})+3 \mathrm{~K}]| | 4 \mathrm{~K}$
$\underline{R}_{N}=2.12 \mathrm{~K} \Omega$
Find the I_{Sc} or I_{N} through terminals a-b by short-circuiting a-b as shown

By Mesh Analysis:
Mark i1, i2, i3 as shown

KVL to Mesh 1:
$4 K i 1+2 K(i 1-i 2)+3 K(i 1-i 3)=0$
$9 \mathrm{Ki} 1-2 \mathrm{~K} i 2-3 \mathrm{Ki} 3=0$ \qquad Eq1

KVL to mesh 2:
$-12+6 K(i 2-i 3)+2 K(i 2-i 1)=0$
$-2 \mathrm{~K} i 1+8 \mathrm{~K} \mathrm{i} 2-6 \mathrm{~K}$ i3 $=12 \ldots \ldots . . \mathrm{Eq} 2$
KVL to mesh 3:
$3 \mathrm{~K}(\mathrm{i} 3-\mathrm{i} 1)+6 \mathrm{~K}(\mathrm{i} 3-\mathrm{i} 2)=0$
$-3 \mathrm{~K} i 1-6 \mathrm{~K} i 2+9 \mathrm{~K} i 3=0 \ldots . .$. Eq3

Solving Eq1, Eq2 and Eq3 we have,
$i 1=3 \mathrm{~mA}, \mathrm{i} 2=6 \mathrm{~mA}, \mathrm{i} 3=5 \mathrm{~mA}$
$\underline{I s c}=\mathrm{i} 3=5 \mathrm{~mA}$
Therefore the Norton's equivalent circuit across terminals a-b is

Step 3: Connect the branch separated, back to the Norton's equivalent circuit to find I_{0}

By Current Division Method
Io $=\frac{5 \mathrm{~m} \times 2.12 \mathrm{~K}}{2 K+2.12 K}=2.57 \mathrm{~mA}$
P3. Find the Norton's Equivalent network across the terminals a-b

Solution:

Since the network consists of the dependent source (Dependant sources cannot be turned off) the Norton's resistance has to be found out as

$$
\mathrm{R}_{\mathrm{N}}=\mathrm{Voc} / \mathrm{Isc}
$$

Step 1: To find out $I_{\underline{S C}}\left(I_{\underline{N}}\right)$
Short Circuit the terminals a-b and mark I_{SC} as shown

$\mathrm{Va}=\mathrm{la}=0$

Since Va is connected to ground through short circuit terminals $\mathrm{a}-\mathrm{b} \mathrm{Va}=0$. Hence the circuit gets reduced to...

KVL: $-12+6 \mathrm{Ki}=0$
$\mathrm{i}=12 / 6 \mathrm{~K}=2 \mathrm{~m} \mathrm{~A}$
$I_{\underline{S C}}=\mathrm{i}=2 \mathrm{~mA}$
Step 2: To find out $\mathrm{V}_{\underline{o c}}$

KCL at node a:
$\frac{\text { Voc }+2000 \mathrm{Ia}-12}{6 K}+\frac{\mathrm{Voc}}{1 K}=0$
$2000 \mathrm{la}+7 \mathrm{Va}=12$

$$
\text { Substituting } \mathrm{I}=\frac{\mathrm{Voc}}{1 K}
$$

$\underline{V}_{\mathrm{oc}}=4 / 3 \mathrm{~V}$

Therefore $\mathrm{R}_{\mathrm{N}}=\mathrm{V}_{\mathrm{OC}} / \mathrm{I}_{\mathrm{SC}}=667 \Omega$
Therefore Norton's equivalent circuit across the terminals a-b is given by

Theorem 2: Thevenin's Theorem

Definition :
Thevenin's Theorem states that a linear two terminal network can be replaced by an equivalent network consisting of an Voltage V_{T} in series with a resistor R_{T}, where

- R_{T} is the equivalent resistance at the terminals when the independent sources are turned off
- V_{T} is open circuit voltage across the terminals.

If the circuit consists of the dependent sources the Norton's resistance has to be found out as $R_{T}=$ Voc / Isc
$P 1$. Find V_{0} by Thevenin's Theorem

Solution:
Step 1: Remove resistor $2 \mathrm{~K} \Omega$ from the circuit across which V_{O} is dropping
Step 2: Find the Thevenin's network across the open circuit terminals ab
Step 3: Connect 2K Ω (Disconnected in Step 1) across the open circuit terminals $\mathrm{a}-\mathrm{b}$ and find V_{O}.

Circuit can be visualized as,

Step 1: Remove resistor $2 \mathrm{~K} \Omega$ from the circuit across which V_{O} is dropping and mark terminals a-b

Step 2: Find the Thevenin's network across the open circuit terminals ab

To find V_{OC} :
Mark V_{OC} across the open circuit terminals as shown:

Mark Mesh currents i_{a} and i b :
By Observation:

$$
\mathrm{I}_{\mathrm{a}}=4 \mathrm{~mA}
$$

Applying KVL to Mesh 1 :
$-12+6 K\left(i_{a}-i_{b}\right)+3 K i_{a}=0$
$9 K i_{a}-6 K i_{b}=12$
Sub. $I_{a}=4 \mathrm{~mA}$,
$I_{b}=4 \mathrm{~mA}$
To find V_{Oc} apply KVL along the dotted path:
$-3 K I_{a}-4 K I_{b}+V o c=0$
Sub. I_{a} and I_{b},
Voc= 28 V
To find R_{T} :
Deactivate the independent sources

$$
R T=(6 K \| 3 K)+4 K
$$

$$
\mathrm{R}_{\mathrm{T}}=6 \mathrm{~K}
$$

Therefore the Thevenini's network is

Step 3: To find V_{O}
Now connect $2 \mathrm{~K} \Omega$ across $a-b$ to find V_{O} $6 \mathrm{k} \Omega$

KVL gives,

$$
-28+6 K i+2 K i=0
$$

$$
\mathrm{i}=28 / 8 \mathrm{~K}=3.5 \mathrm{~mA}
$$

$$
\mathrm{Vo}=2 \mathrm{~K} \mathrm{i1}=7 \mathrm{~V}
$$

P2. Find the Thevenin's Equivalent circuit across terminals a-b

Solution:

Since the dependant sources are involved R_{T} is given by $R_{T}=V_{o c} / I_{S C}$

Step 1: To find V_{OC}

Applying KVL to LHS part:
$-5+500 i+V_{a b}=0$
$500 \mathrm{i}+\mathrm{V}$ ab $=5$

Applying KCL to RHS part:
$10 \mathrm{i}+\mathrm{V} \mathrm{ab} / 25=0$
$250 i+V a b=0$
Solving equations we have
$\mathrm{i}=0.02 \mathrm{~A} \quad \mathrm{~V}_{a b}=-5 \mathrm{~V}$
$V_{o c}=V_{a b}=-5 \mathrm{~V}$

Step 2:To find I $\underline{\text { SC }}$

Short circuit terminals abb and mark $I_{S C}$ as shown

Mark V_{ab}
Since V_{ab} is connected to ground through $\mathrm{a}-\mathrm{b}, \mathrm{V}_{\mathbf{a b}}=\mathbf{0}$
Since 25Ω is in parallel with a short, 25Ω is redundant

Therefore the circuit reducesto,

From LHS part, KVL gives
$-5+500 i=0$
From RHS part,
${ }^{\prime} S C=-10 i$
and sub. $\mathrm{i}=0.01 \mathrm{~A}$
$I_{S C}=-0.1 \mathrm{~A}$

Therefore $\mathrm{R}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OC}} /{ }_{\mathrm{SC}}=-5 /-0.1$

$$
R_{T}=50 \Omega
$$

Therefore the Thevenin's network is,

P3. Find the Thevenin's Equivalent network across terminals a-b

Solution:
Step1: To find Mark $\mathrm{V}_{\mathrm{OC}}\left(\mathrm{V}_{\mathrm{T}}\right)$ across terminals a-b
Mark the branch currents i1 and i2 as shown

Applying KVL to mesh1
$-120+900 \mathrm{i} 1+600 \mathrm{i} 1=0$
$i 1=0.08 \mathrm{~A}$
Applying KVL to mesh2
$-120+1204 \mathrm{i} 2+800 \mathrm{i} 2=0$
$\mathrm{i} 2=0.05988 \mathrm{~A}$

To find V_{OC} :

Applying KVL along the pink path
$-900 i 1+1204 i 2-V_{O C}=0$
$\mathrm{V}_{\mathrm{OC}}=0.095 \mathrm{~V}$

Step 2: To find R_{T}
Turning off 120 V source

which can be visualized as

$R_{\mathrm{T}}=(900| | 600)+(1204| | 800)$

$$
\mathrm{R}_{\mathrm{T}}=840.638 \Omega
$$

Therefore Thevenin's network is

Summary:

1. Thevenin's network is a Voltage in series with a resistor
2. Thevenin's voltage is V_{OC} across theterminals
3. Thevenin's resitance and Norton's resistance are the same.
4. Thevenin's and Norton's equivalent networks can be obtained by source trensformatiom.

Theorem 3: Maximum Power Transfer Theorem

There are three cases to be considered in this

1. AC circuits with Impedance $\left(Z_{L}\right)$ as load
2. AC circuits with purely resistive load (R_{L})
3. $D C$ circuits with resistive load (R_{L}).

Conditions for Maximum Power Transfer :

where,

$$
\begin{aligned}
& Z_{T}=R_{T}+j X_{T} \\
& Z_{L}=R_{L}+j X_{L}
\end{aligned}
$$

KVL to closed path:
$-V_{T}+Z_{T} I+Z_{L} I=0$

$$
I=\frac{V_{T}}{Z_{T}+Z_{L}}=\frac{V_{T}}{\left(R_{T}+j X_{L}\right)+\left(R_{L}+j X_{L}\right)}
$$

The average power delivered to the load is

$$
\begin{aligned}
& P=\frac{1}{2}\left|I^{2}\right| R \\
& \mathrm{I}^{2}=\frac{V_{T}^{2}}{\left[\left(\mathrm{R}_{\mathrm{T}}+\mathrm{j} \mathrm{X}_{\mathrm{T}}\right)+\left(\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}\right)\right]^{2}} \\
& \mathrm{I}^{2}=\frac{V_{T}^{2}}{\left[\left(\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{L}}\right)+\mathrm{j}\left(\mathrm{X}_{\mathrm{T}}+\mathrm{X}_{\mathrm{L}}\right)\right]^{2}} \\
& |\mathrm{I}|^{2}=\frac{\left|\mathrm{V}_{\mathrm{T}}\right|^{2}}{\left[\sqrt{\left(\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{L}}\right)^{2}+\left(\mathrm{X}_{\mathrm{T}}+\mathrm{X}_{\mathrm{L}}\right)^{2}}\right]^{2}}
\end{aligned}
$$

Subtituting in equation in 1

$$
\mathrm{P}=\frac{R_{\mathrm{L}}}{2} \frac{\left|\mathrm{~V}_{\mathrm{T}}\right|^{2}}{\left(\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{L}}\right)^{2}+\left(\mathrm{X}_{\mathrm{T}}+\mathrm{X}_{\mathrm{L}}\right)^{2}}
$$

For this P to be $\mathrm{P}_{\text {Max }}$ we can vary two parameters
$-R_{L}$ and X_{L} in the load impedance.
Mathematically it can be done by differentiating P with respect to R_{L} and X_{L} partially and equating it to zero respectively.
ie,
$\frac{\partial P}{\partial R_{L}}=0 \quad$ and $\quad \frac{\partial P}{\partial X_{L}}=0$
Performing $\frac{\partial P}{\partial R_{L}}=\mathrm{O}$ results in
$\left(R_{T}+R_{L}\right)^{2}+\left(X_{T}+X_{L}\right)^{2}-2 R_{L}\left(R_{T}+R_{L}\right)=0$
This implies

$$
\begin{equation*}
R_{L}=\sqrt{R_{T}^{2}+\left(X_{T}+X_{L}\right)^{2}} \tag{2}
\end{equation*}
$$

Performing $\frac{\partial P}{\partial X_{L}}=0$ results in

$$
X_{L}=-X_{T} \quad \cdots \cdots \cdots
$$

$$
\text { Substituting } 3 \text { in } 2
$$

$$
\begin{equation*}
R_{L}=R_{T} \tag{4}
\end{equation*}
$$

From equations 3 and 4

$$
\mathrm{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}=\mathrm{R}_{\mathrm{T}}-\mathrm{j} \mathrm{X}_{\mathrm{T}}
$$

$$
Z_{\mathrm{L}}=Z_{T}^{*}
$$

If the Load Z_{L} is purely resistive then
$\mathrm{X}_{\mathrm{L}}=0$ and $\mathrm{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}}$
Substituting $X_{L}=0$ in 2

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=\sqrt{R_{T}^{2}+X_{T}^{2}} \\
& \ldots \ldots \ldots \ldots \\
& \mathrm{R}_{\mathrm{L}}=\left|\mathrm{Z}_{\mathrm{T}}\right| \quad \ldots \ldots \ldots \ldots \ldots .6
\end{aligned}
$$

Equations 4,5 and 6 are the conditions for which the maximum power would be transferred to theload.

Highlights:

1. AC circuits with Impedance $\left(Z_{L}\right)$ as load

2. AC circuits with Pure Resistive $\left(R_{L}\right)$ load

$P_{\text {max }}=|i|^{2} R_{L}$
3. DC circuits with Resistor (R_{L}) as the load

$P_{\max }=\mathrm{i}^{2} \mathrm{R}_{\mathrm{L}}$
P1. Calculate the value of Z_{L} for maximum power transfer and also calculate the maximum power.

Solution:
Step1. Remove the Impedance Z_{L}
Step2. Find the Thevenin's equivalent network across the terminals a-b
Step3. Connect $Z_{L}=Z_{T}{ }^{*}$ across the terminals $a-b$ for the maximum power transfer.
Step4. Find $P_{\text {max }}=|1|^{2} R_{L}$

Step1. Remove the Impedance $Z_{L_{L}}$ and mark terminals $a-b$

Step2. Find the Thevenin's equivalent network across the terminals a-b.
To find Thevenin's Impedance $Z_{\underline{1}}$:
Deactivating the independent sources we have,

$Z_{T}=10| |(3-j 4)$
$Z_{T}=2.97-j 2.16 \Omega$
To find Thevenin's Voltage $\mathrm{V}_{\underline{\mathrm{I}}}$ or $\mathrm{V}_{\underline{o c}}:$

KVL implies:
$(3-j 4) i+20+10 i=0$
$i=-1.405-j 0.432$
KVL along the dotted path to find V_{Oc} :
$-10 i-20+10\left\llcorner 45+V_{\text {oc }}=0\right.$
Substituting i

$$
\begin{aligned}
V_{T} & =-1.121-\mathrm{j} 1.391 \\
& =11.44 \mathrm{~L}-95.62 \mathrm{~V}
\end{aligned}
$$

Therefore Thevenin's equivalent network is

Step3. Connect $Z_{\underline{I}}=Z_{I}{ }^{*}$ across the terminals $a-b$ to find the maximum power transfer.

KVL implies:
$-11.44 L-95.62+(2.9729) i+(2.9729) i=0$
$\mathrm{i}=-0.185-\mathrm{j} 1.916 \mathrm{~A}$
$\mathrm{i}=1.925 \mathrm{~L}-95.62 \mathrm{~A}$
Step 4. To find $\mathrm{P}_{\text {max }}$
$P_{\text {max }}=|i|^{2} R_{L}$
$=(1.925)^{2} \times 2.9729$
$P_{\text {max }}=11$ Watts
P2. Calculate the value of R_{L} for maximum power transfer and also calculate the maximum power.

Solution:
Step1. Remove the Impedance Z_{L}
Step2. Find the Thevenin's equivalent network across the terminals a-b
Step3. Connect $Z_{L}=|Z|$ across the terminals $a-b$ for the maximum power transfer.
Step4. Find $P_{\max }=|I|^{2} R_{L}$
From Step1 and Step2 (Refer P1), the Thevenin's equivalent is

Step3. Connect $R_{L}=|Z|$ across the terminals $a-b$ to find the maximum power transfer.

$$
\begin{aligned}
& R_{L}=\left|Z_{T}\right|=\sqrt{(2.97)^{2}+(2.16)^{2}} \\
& \mathrm{R}_{\mathrm{L}}=3.675 \Omega
\end{aligned}
$$

KVL implies
$-11.44\llcorner-95.62+(2.97-j 2.16) i+3.675 i=0$
$\mathrm{i}=1.6377 \mathrm{~L}-77.62 \mathrm{~A}$
Step 4. To find $\mathrm{P}_{\text {max }}$

$$
\begin{aligned}
P_{\max } & =|i|^{2} R_{L} \\
& =(1.6377)^{2} \times 3.675 \\
P_{\max } & =9.85 \mathrm{~W}
\end{aligned}
$$

P3. Find the R_{L} across the load for which maximum power will be transferred to the load and hence find the maximum power

Solution:
Step 1: Remove the resistor $\mathrm{R}_{\underline{1}}$ and mark terminals $\mathrm{a}-\mathrm{b}$ as shown

Step 2: Find the Thevenin's network across the terminals $\mathrm{a}-\mathrm{b}$
To find V oc:

By observation:
$\mathrm{i}_{1}=10 \mathrm{~A}$

KVL to mesh 2:
$-20+3 i_{2}=0$
$\mathrm{i}_{2}=20 / 3 \mathrm{~A}$

$-3 i_{2}-6 i_{1}+V_{\text {OC }}=0$
KVL along the dotted path
$V_{\text {OC }}=6 i_{1}+3 i_{2}$
Substituting i_{1} and i_{2}
$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OC}}=80 \mathrm{~V}$
To find R_{T} :

which can be visualized as

Since 3Ω is in parallel with the short, it is redundant.
Therefore $R_{T}=6 \Omega$
Therefore Thevenin's network is

Step 3: To find $\mathrm{P}_{\text {max }}$

Connect $R_{L}=R_{T}$ across the terminals a-b

KVL implies:
$-80+6 i+6 i=0$
$i=20 / 3 \mathrm{~A}$
$P_{\text {max }}=i^{2} R_{L}=(20 / 3)^{2} \times 6=266.66 \mathrm{~W}$
Summary:

1. Maximum power transfer theorem is the extention of Thevenin's theorem.
2. The coditions for Maximum power to be transferred to the load are
i) For AC circuits if load is impedance then $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{T}}{ }^{*}$
ii) For $A C$ circuits if load is purely resistive then $R_{L}=\left|Z_{T}\right|$
iii)For DC circuits $R_{L}=R_{T}$
3. Power is always a real entity and therefore for power calculations always real part of Z_{L} (i.e., R_{L}) is used.

Theorem 4: Superposition Theorem

Statement:

In any Linear circuit containing multiple independent sources, a current or a voltage at any point in the circuit can be calculated as algebraic sum of Individual contributions of each source when acting alone.

Problems:
P1. Find i_{o} by Super position theorem.

Solution:
Let $\mathrm{i}_{0}=\mathrm{i}_{01}+\mathrm{i}_{02}$
where,
i_{01} is the contribution of 6 V source when acting alone and
i_{02} is the contribution of 4 mA source when acting alone
Steps:
Step 1 : To find $\mathrm{i}_{\mathrm{o}_{1}}$ which is the contribution of 6 V acting alone
Deactivating the 4 mA source the circuit becomes

Applying KVL to mesh 1:
$12 K i_{a}+12 K\left(i_{a}-i_{b}\right)+6=0$
$24 K i_{a}-12 K \quad i_{b}=-6$ Eq1

Applying KVL to mesh 2:
$12 K\left(i_{b}-i_{a}\right)+12 K i_{b}+12 K i_{b}-6=0$
$-12 \mathrm{~K} \mathrm{i}_{\mathrm{a}}+36 \mathrm{~K} \mathrm{i}_{\mathrm{b}}=6 \ldots \ldots \ldots \ldots .$. Eq2
Solving equations Eq1 and Eq2,
$\mathrm{i}_{\mathrm{a}}=-0.2 \mathrm{~mA}$
$\mathrm{i}_{\mathrm{b}}=0.1 \mathrm{~mA}$
$i_{01}=i_{a}-i_{b}=-0.3 \mathrm{~mA}$

Step 2: To find $\mathrm{i}_{\underline{0} 2}$ which is the contribution of 4 mA source acting alone
Deactivating the 6 V source the circuit becomes

Constraint equation:
$\mathrm{i}_{3}-\mathrm{i}_{2}=4 \mathrm{~mA}$
Applying KVL to mesh 1:
$12 \mathrm{~K} \mathrm{i}_{1}+12 \mathrm{~K}\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=0$
$24 \mathrm{~K} \mathrm{i}_{1}-12 \mathrm{~K} \mathrm{i}_{2}=0$
Applying KVL to Supermesh:
$12 \mathrm{~K}\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+12 \mathrm{~K} \mathrm{i}_{2}+12 \mathrm{~K} \mathrm{i}_{3}=0$
$-12 K i_{1}+24 K i_{2}+12 K i_{3}=0$

Applying KVL to mesh 1:

$12 \mathrm{~K} \mathrm{i}_{1}+12 \mathrm{~K}\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=0$
$24 \mathrm{~K} \mathrm{i}_{1}-12 \mathrm{~K} \mathrm{i}_{2}=0$
Solving equations 1,2 and 3
$\mathrm{i}_{1}=-0.8 \mathrm{~mA} ; \mathrm{i}_{2}=-1.6 \mathrm{~mA} ; \mathrm{i}_{3}=2.4 \mathrm{~mA}$
$i_{02}=i_{1}-i_{2}=0.8 \mathrm{~mA}$
Step 3 : To find $\mathrm{i}_{\text {o }}$
By Super Position Theorem,
$\mathrm{i}_{0}=\mathrm{i}_{01}+\mathrm{i}_{02}$
$i_{0}=-0.3 m+0.8 m$
$\mathrm{i}_{\mathrm{o}}=0.5 \mathrm{~m} \mathrm{~A}$

P2. Find V_{o} by Super position theorem.

Solution:

$$
\text { Let } V_{0}=V_{01}+V_{02}+V_{03}
$$

where,
V_{01} is the contribution of 12 V source when acting alone
V_{02} is the contribution of 6 V source when acting alone
V_{03} is the contribution of 2 mA source when acting alone
Step 1: To find V_{01}
Deactivate 6 V and 2 mA sources

KVL to mesh2:
$2 K i_{b}+2 K i_{b}=0$
$\mathrm{i}_{\mathrm{b}}=0$
$V_{o 1}=-2 K i_{b}=0 V$
Step 2: To find $\mathrm{V}_{\underline{02}}$
Deactivate 12 V and 2 mA sources

KVL to mesh2:
$2 K i_{y}+6+2 K i_{y}=0$
$\mathrm{i}_{\mathrm{Y}}=-1.5 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O} 2}=-2 \mathrm{~K} \mathrm{i}_{\mathrm{Y}}=3 \mathrm{~V}$
Step 3: To find $V_{\underline{o 3}}$
Deactivate 12 V and 6 V sources

$\mathrm{i}_{1}=\mathrm{i}_{2}=1 \mathrm{~mA}$
$\mathrm{V}_{03}=2 \mathrm{~K} \mathrm{i}_{1}=2 \mathrm{~V}$

Step 4:

By Super position Theorem
$V_{0}=V_{01}+V_{02}+V_{03}$
$V_{0}=0+3+2$
$\mathrm{V}_{0}=5 \mathrm{~V}$

P3. Find i by Super position theorem.

Solution:
Let $i=i_{1}+i_{2}$
where,
i_{1} is the contribution of 24 V source when acting alone
i_{2} is the contribution of 7A source when acting alone
The dependant voltage source cannot be deactivated - keep it as it is.
Step 1: To find i_{1}
Deactivate 7A source

Applying KVL:

$-24+3 i_{1}+2 i_{1}+3 i_{1}=0$
$\mathrm{i}_{1}=3 \mathrm{~A}$
Step 2: To find i_{2}
Deactivate 24V source

Constraint equation:
$-i_{X}+i_{y}=7 A$
KVL to Supermesh:
$3 i_{x}+2 i_{y}+3 i_{2}=0$
Sub. $i_{2}=i_{x}$
$3 \mathrm{i}_{\mathrm{x}}+2 \mathrm{i}_{\mathrm{y}}+3 \mathrm{i}_{\mathrm{x}}=0$
$6 i_{x}+2 i_{y}=0$
Solving the equations
$-\mathrm{i}_{\mathrm{X}}+\mathrm{i}_{\mathrm{y}}=7 \mathrm{~A}$
$6 i_{x}+2 i_{y}=0$
Implies,
$i_{X}=-1.75 \mathrm{~A}$ and $\mathrm{i}_{\mathrm{y}}=5.25 \mathrm{~A}$
$\mathrm{i}_{2}=\mathrm{i}_{\mathrm{x}}=-1.75 \mathrm{~A}$
Step 3:
By Super position Theorem
$\mathrm{i}=\mathrm{i}_{1}+\mathrm{i}_{2}$
$i=3-1.75$
$\mathrm{i}=1.25 \mathrm{~A}$

Summary:

1. Superposition theorem is applicable to circuits with multiple independent sources only.
2. Dependant sources can bepresent.
3. At a time only one independent source should be acting, which gives its individual contribution.
4. Algebraic summation of the individual contributions gives the actual current/voltage in a circuit.
5. It is as good as cutting down complex problems into simplerones.

NETWORK ANALYSIS (18EC32)

Syllabus:-

Module -3

Transient Behavior and initial conditions

Imitial Conalitione
Any electaical n / w consists of Vg sources, Correne sources, L \& C.
when such n/wes are to be auralysed, tho integro-difforential eqne are coritten \& solved gencal soln to such eqn cous.ate of 2 parts.
i) Complementary fun \rightarrow general soln
ii) particular intergral \rightarrow particulor soln

Any reaponee cons, sts of iniltal state reansient respouse \&
 steady state response

Complentary fin is soln of homogeneus eqn which also repreesent the respone of aw lyetem.
Transient respone depinals on type, value \& arrangement of elemente in the n/w.
Complemtary fur is genoral sobn of homogenoul eqn \& particulor integral is the pari.ulor soln of non honogenous eqn.
while solling eqr do of $n^{\text {th }}$ order, we conreaross n no of constants in the Complementary if n, which are to be evaluatec to get partor exact soln. To evaluate there Conelonits, n no of initial conditions are required.
(The initial conditions of n / w are the Cons it prevailing in the elements of the n / ω at it I of closing the switch at $t=0$.

In a switching $n, t=0$ is taken as ref The initial Conditions in $n / 10$ may be the yes the various elements, currents through them or charges existing on them at time of loitching op le at $t=0$.
Immediately before the switching op, these quantities are referred to as

$$
\left(\mathrm{O}^{-}\right),{ }^{i}\left(\mathrm{O}^{-}\right), q\left(\mathrm{O}^{-}\right) \text {at } t=0^{-} .
$$

Immediately after surtehing op n, these qhountitie are referred to as $v\left(\mathrm{O}^{+}\right), i\left(\mathrm{O}^{+}\right), q\left(\mathrm{O}^{+}\right)$at $t=0^{-+}$.

The initial of $V\left(0^{-}\right), i(0), q\left(0^{-}\right)$, pase history ondizione in a $n / 10$ depends on the pase history of the n/Lo prior to to $t=0^{-}$ and nim structure at $z=0^{+}$just after swot ching They also depend on the nature of clements in the n / w.

The knowledge of initial values of one or more derivative of response, are helpful in anticipating the form of response, thus we can check the soln.

Knowing the values of Vg \& currents of elements at $t=0^{-}$, finding there values at $t=0^{+}$, conetitree the evaluation if initial Condit ens

Initial conditions of element.
Resistor.

In resistor, current \& vas are related by

$$
V=i R
$$

when a step response of V Vg is applied to \%es.etor by closing switch at $t=0$, the Current is also a step function s is given by $I=\frac{V}{R}$.
The waveform of current is same as wit of
Vg ie
current borough, Q changes inetantaneoully, if vg changes instantaneously III the Vg across resistor also changes inetaneasly cohen the Current tirrongh it Changes inetantancubly

The inductor:

Current troughs inductor does not Change instantaneously.
when switch is closed at $z=0$, if inductors does not have any initial Current at $t=0^{+}$, 1.e Lace al open ckt.

But at $t=0$, if the conductor has initial current Io. Hen at $t=0^{+}$, current in inducer Continues to be Io, inductor acts as a current source of Io ampere

The capacitor:

$$
c=\frac{Q}{v} \Rightarrow v=\frac{Q}{c}
$$

The Vg arose the O counnot change inetantaridy. when uncharged capacitor is connected to a $D C$ Vg sown V by closing switch $k a t t=0$, when there is no charge on s C , Vg across it is $2 e r o$ \& hence acts as short che. If capacitor has then at $t=0^{+}$, the capacitor colounts at $t=0$,
is equivalent to Vg solace of $V=\frac{Q_{0}}{G}$
amaru
Initial Condition e

Condition of element at $t=0^{-}$.
\qquad
\qquad

Concliz, on of element at $t=0^{+}$.

$$
v=\frac{q_{0}}{c} \text {, }
$$

(3)

There are some exceptions to the initial Conditions of due elements They are.

1. When the impulse $V g$ it applied de an indenctance, its current changes instantaneowly.
2. When an impale current is applied bo a capaute, $i t 8 \mathrm{Vg}$ changer $\mid \&$ AI instantaneously.
procedure for finding initial Condit, onus:
There is no enrique proceduce for to find the initial conditions It is like a game of chess, strategy is
Chooses depending on other opposil'g party move Here the procedure depends on the particular now being Considered.
general procedure is as follows:
3. Initial values of V or currents $b e$ fore 1 switch at $t=0^{-}$can be found directly from the schematic diagram of given,
2 For each value element of ct er n / ω, we must find out, what happens to element at $t=0^{+} 1 \cdot e$ after closing the switch.
4. A new equivalent $n / \omega 0$ oo $t=0^{+}$is Constructed as per following rules.
a) Replace all the inductors by open ckll of e Current soconce having values of current flowing at $t=0^{-}$.
b) Replace all the capacitors by short cit or $v g$ source of $v=\frac{q_{0}}{c}$, if lure is any initialchorg
C) Resistors are left en the Nw without any Cham
5. From nw at $t=0^{+}, t^{2} s t$ initial values of Vg as currents are solved. Then their derivates are found.
VI relations of n / ω elements

$$
0=\frac{9}{5}=\frac{18}{6}
$$

$$
\begin{aligned}
& R \rightarrow V(E)=R\left(i(t) \text { and } i(t)=\frac{V(t)}{R}\right. \\
& L \rightarrow V(t)=L \frac{d i(t)}{d t} \quad \& \quad i(t)=\frac{1}{L} \int_{0^{-}}^{t} v(t) d t \\
& C \rightarrow V(t)=\frac{1}{c} \int_{0}^{t} i(t) d t \text { \& } i(t)=\frac{c d v(t)}{d t} \int_{0}^{\frac{1}{L}} V(t) d t+i_{L}\left(0^{-}\right) \text {. } \\
& V(t)=\frac{1}{c} \int_{0}^{4} i(t) d t+V_{c}\left(0^{*}\right) \\
& \text { Page } 183
\end{aligned}
$$

Final Conditions in a n / ω. ie at $t=-\infty$.

$$
V=L \frac{d i}{d E}
$$

under etciady state condition $\frac{d^{\prime}}{d t}=0$. This means $V=0$ \& hence L acts al shot ckt att $=(6)^{\circ}$ uncharged \& $v=0 \Rightarrow S$

$$
u(t)=c \frac{d v(t)}{d t}
$$

under steady state. $\frac{d V(t)}{d E}=0$ ie at $z=\infty, i(t)=0$. 1.e capacitors acts an open Ckt.

1. For the niue known below, switch s closed at $t=0$, Find the conditions $i\left(0^{+}\right)$

$$
v=\frac{L d i}{d t}+i R
$$

at $t=0^{+}$, equivalent ckt is

kor to given loop.

$$
V=\alpha \frac{d i}{d t}+i(t) R
$$

at $t=\left(O^{+}\right)$

$$
\begin{aligned}
& \left(O^{+}\right) L \frac{d i\left(0^{+}\right)}{d t}+i\left(0^{+}\right) R \\
& V=\frac{L d i\left(0^{+}\right)}{d t} \\
& V=\frac{d i\left(0^{+}\right)}{d t}=\frac{V}{r}
\end{aligned}
$$

ior the ckt shower.

$$
V=10 \mathrm{~V}, R=10 \Omega \quad L=1 \mathrm{H} \quad C=10 \mathrm{MF}
$$

\& $V_{c}(0)=0$ find
$i\left(0^{+}\right), \frac{d i}{d t}\left(0^{+}\right)$and $\frac{d^{2} i}{d t^{2}}\left(0^{+}\right)$.

$\infty \quad i=\frac{d v_{0}}{d t}$
swath is cloeed at $t=0$

$$
\begin{align*}
& \text { cloced at } t=0 \tag{1}\\
& V=i R+L \frac{d i}{d t}+\frac{1}{c} \int i d t
\end{align*}
$$

At $t=O^{(t)}$.

at t

$$
\begin{aligned}
& \begin{array}{l}
t=b^{t} \\
v=R i\left(O^{+}\right)+
\end{array} v=d^{\left(k^{2}+2 \frac{d i\left(t^{t}\right)}{d t}+\frac{1}{c} \int 4\left(0^{-1}\right) d t\right.} \\
& V=R i\left(O^{+}\right)+L \frac{\operatorname{di}\left(O^{+}\right)}{d t} \\
& V=0+2 \frac{d^{\prime}\left(0^{+}\right)}{d t} \\
& \frac{d i\left(0^{+}\right)}{d t}=\frac{v}{r}=\frac{10}{1}=10 \mathrm{~A} / \mathrm{sec} .
\end{aligned}
$$

differentiabing θ.
$\because V$ iscons

$$
\begin{aligned}
& R \frac{d i\left(0^{+}\right)}{d t}+L \frac{d^{2} i\left(0^{+}\right)}{d t}+\frac{1}{c} i\left(0^{+}\right)=0 \\
& 10 \times 10+1{\frac{d^{2} i\left(0^{+}\right)}{d t}+\frac{1}{6}(\Phi)=0 .}^{d^{2} i\left(0^{+}\right)} \frac{\text { vish }}{d t}=\frac{-100}{L}=\frac{-100}{1}=-100 \mathrm{~A} / \mathrm{sec}^{2}
\end{aligned}
$$

Page 186
3) in the $n / \&$ shown, the switch k is cis at $t=0$, with capacitor unclvarged. Find the values for $i, \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$, for the Clement values as follows.

$$
V=100 \mathrm{~V}, \quad R=1000 \mathrm{R} \text { and } c=1 \mathrm{ME}
$$

when cloyed, at $t=0$,

$$
V=i R+\frac{1}{c} \int i d t
$$ n / ω at $t=\delta(t)$. $\mathrm{C} \rightarrow$ uncharged $\rightarrow \mathrm{Vg}$ is $\mathrm{O} \rightarrow \mathrm{SC}$.

$$
V=i\left(0^{+}\right) R \Rightarrow i\left(0^{+}\right)=\frac{V}{R}=\frac{100}{1000} 0 .|\mathrm{A}|
$$

diff (1).

$$
\begin{align*}
& R \frac{d i\left(O^{+}\right)}{d t}+\frac{1}{c} i\left(O^{+}\right)=0 \tag{2}\\
& R \frac{d i\left(O^{T}\right)}{d t}+\frac{1}{Q 1 \mu \mathrm{HE}}(0.1)=0 \\
& \frac{d i\left(O^{+}\right)}{d t}=-\frac{0.1 \times 10^{6}}{R} \\
& \begin{aligned}
\frac{d i\left(O^{+}\right)}{d t} & =-\frac{0.1 \times 10^{63}}{1000}=0.1 \times 10^{3} \\
& =-1 \times 10^{2} \\
& =-100 \mathrm{~A} / \mathrm{sec}
\end{aligned}
\end{align*}
$$

diff (2)

$$
\begin{aligned}
& R \frac{d^{2} i\left(0^{+}\right)}{d t}+\frac{1}{c} \frac{d i\left(0^{+}\right)}{d t}=0 . \\
& d^{2}\left(i\left(0^{+}\right)=-\frac{1}{c} \frac{d i\left(0^{+}\right)}{d t} / R=\frac{-\frac{(-100)}{10^{6}}}{10^{3}}=\frac{100}{10^{3}}-10^{5} 187\right.
\end{aligned}
$$

in the n / w shower, k is closed at $t=0$, with zero current in the indrector. Find $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t}$ at $t=0^{+}$. if $R=10 \Omega$, $h=11 \mathrm{t}$ and $V=100 \mathrm{~V}$.

$$
\begin{equation*}
v=i R+2 \frac{d i}{d t} \tag{1}
\end{equation*}
$$

at $t=\left(0^{+}\right)$

(4)

$$
\begin{aligned}
R \frac{d i}{d t}++\frac{d^{2} i}{d t^{7}} & \frac{d i}{d t}
\end{aligned}=\frac{V-i\left(0^{+}\right) R}{\nu}
$$

diff (1)

$$
\begin{aligned}
& R \frac{d i\left(0^{+}\right)}{d t}+1 \frac{d^{2} i\left(0^{t}\right)}{d t}=0 \\
& \text { d. } 10 \times 100+1 \frac{d^{2} i\left(0^{+}\right)}{d t}=0 \\
& \frac{d^{2} i\left(0^{+}\right)}{d t}=-1000 \mathrm{~A} / \mathrm{sec}^{2}
\end{aligned}
$$

5 For the now shown, k is changed frow: position a to b at $t=0$. Solve for i, $\frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0+$.
if $R=1000 \Omega, L=1 \mathrm{H} \quad C=0.12 \mathrm{~F}$ and $V=100 \mathrm{~V}$. Assume that capacitor is initially uncharged.

When k is at position $a . \Rightarrow h \rightarrow S C$.

$$
\begin{aligned}
& ?-i\left(0^{-}\right)=\frac{V}{R}=\frac{100}{1000}=0.1 \mathrm{~A} \\
& \therefore \quad i\left(\mathrm{O}^{+}\right)=0.1 \mathrm{~A}
\end{aligned}
$$

when k is changed from a to be,

$$
\begin{aligned}
& i\left(O^{+}\right)=0 \cdot 1 \mathrm{~A} \\
& R i+L \frac{d i}{d t}+\frac{1}{c} \int i d t=0 . \\
& R i\left(O^{+}\right)+\frac{L d i\left(0^{+}\right)}{d t}+\frac{1}{c} \int i\left(O^{+}\right) d t=0 \\
& R i\left(O^{+}\right)+\frac{L d i\left(0^{+}\right)}{d t}+V_{c}^{\left(O^{+}\right)}=0 . \\
& R\left(i\left(0^{+}\right)+\frac{L d i\left(0^{+}\right)}{d t}=0 .\right. \\
& \left.\frac{d i\left(0^{+}\right)}{d t}\right) \left.=\frac{-R \times 0.1}{L}=\frac{-1000 \times 0, t)}{1}=-100 \mathrm{~A} \right\rvert\, \mathrm{sec} .
\end{aligned}
$$

diff (1)

$$
\begin{aligned}
& R \frac{d i\left(0^{+}\right)}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{1}{c} i d t=0 . \\
& \begin{aligned}
& 1000 \times(-100)+1 \times \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}+\frac{\dot{i}\left(0^{+}\right)}{c}=0 . \\
&-10^{5}+L \frac{d^{2} \cdot\left(0^{+}\right)}{d t}+\frac{0 \pi}{001 \times 10^{-6}}=0 . \\
& \frac{d^{2}:\left(0^{+}\right)}{d t^{-}}=10^{5}-1 \times 10^{-1} \times 10^{7} \\
&=10^{5}-10^{6} . \\
&=-9 \times 10^{5} \mathrm{~A} / \mathrm{sec}^{2} \quad 1000000 \\
& 900000
\end{aligned}
\end{aligned}
$$

64). In the circuit shown in fig. Switch k is opened at $t=0$. find the values of $v, \frac{d y}{d t}$ and $\frac{d^{2} v^{2}}{d t^{2}}$ at $t=0^{+}$.
kel .

$$
\begin{gather*}
-10+\frac{v}{100}+c \frac{d v}{d t} \tag{1}\\
\frac{v}{100}+c \frac{d v}{d t}=10
\end{gather*}
$$

when switch is closed, ace the current flows thanogh 80. switclu, \& capacitor is not charged

$$
\therefore V_{c}\left(0^{-}\right)=0=V_{C}\left(0^{+}\right)
$$

when opened.

at $t=\left(0^{+}\right)$

$$
V\left(0^{+}\right)=0
$$

$$
\begin{aligned}
& \frac{v\left(0^{+}\right)}{100}+c \frac{d v\left(0^{+}\right)}{d t}=10 \\
& 0+c \frac{d v\left(0^{+}\right)}{d t}=10 \\
& \frac{d v\left(0^{+}\right)}{d t}=\frac{10}{c}=\frac{10}{10^{-6}}=10^{7} \mathrm{v} / \mathrm{sec}
\end{aligned}
$$

diff (1).

$$
\begin{aligned}
& \frac{\frac{d v}{d t}}{100}+c \frac{d^{2} v}{d t^{2}}=0 \\
& \frac{10^{15}}{10^{2}}+c \frac{d^{2} v}{d t^{2}}=0 \\
& c \frac{d d^{2} v}{d t^{2}}=-10^{5} \\
& \frac{d^{2} v}{d t^{2}}=\frac{-10^{5}}{c}=\frac{-10^{5}}{10^{-6}}=-10^{11} \mathrm{v} / \mathrm{sec}^{2}
\end{aligned}
$$

(7) In the mao shown the switch is opened at $t=0$, after the nim has attained the steady state with the scoitch closed. a) Find cen expression for the vg acerose the Switch at $t=0^{+}$ what is the value of the derivative of the Ng across the switch?

when k is closed, steady state attained. \downarrow acts as $8 C$ \& C act as $O C$

$$
i\left(0^{\circ}\right)=\frac{V}{R_{2}}=i\left(0^{+}\right)
$$

\& capacitor is uncharged,

$$
v_{c}\left(0^{-}\right)=0=v^{\left(0^{+}\right)}
$$

when k is opened.

They ask to find V_{g} across sur
$V_{k}=i(t) R_{1}+\frac{1}{c} \int i d t$.
at $t=\left(0^{+}\right)$

$$
\begin{gathered}
V_{k}=i(t) c_{1} c \\
v_{k}=i\left(0^{+}\right) R_{1}+v_{c}\left(\theta^{+}\right) \\
v_{k}=i\left(0^{+}\right) R_{1} \\
v_{k}=\frac{v}{R_{2}} \cdot R_{1}= \\
v_{k}=v \frac{R_{1}}{R_{2}} \\
\frac{d v_{k}}{d t}=\frac{d i}{d \tau} R_{1}+\frac{i}{c} \\
\frac{d v_{k}\left(0^{+}\right)}{d t}=R_{1}(-1)+\frac{1}{c} \\
\frac{d v_{k}}{d t}=-R_{1}+\frac{1}{c} \\
\frac{d v_{k}}{d t}=\frac{1}{c}-R_{1}
\end{gathered}
$$

(8) The nw shown in fig has 2 independent pairs If the switch k is opened at t^{\prime} At n find the following quourbizies at $t=0^{+}$,
i) v_{l}
ii) v_{2}
ii') $\frac{d v_{1}}{d t}$
\& $\quad v) \frac{d V_{2}}{d t}$.

when $t=\left(0^{+}\right)$

are current flows through closed switch \therefore hence

$$
\begin{aligned}
& \left.i_{1}\left(0^{-}\right)=0=\frac{i}{2}+0^{+}\right) \\
& \therefore V_{L}\left(0^{+}\right)=0 \\
& \quad \therefore V_{c}\left(0^{+}\right)=0 \\
& \therefore V_{2}(0)=0
\end{aligned}
$$

when swish k is opened at $t=0$.
at node

at noddle $V_{1}-i(t)+\frac{V_{1}}{R_{1}}+i_{L}=0$

$$
\begin{align*}
& \left.i(t)=\frac{V_{1}}{R_{1}}+i_{L}\left(0^{+}\right)\right] \tag{1}\\
& i\left(O^{+}\right)=\frac{V_{1}\left(^{+}\right.}{R_{1}}-0 \\
& \therefore \quad V_{1}\left(O^{+}\right)=R_{1}\left[i\left(O^{+}\right)\right] .
\end{align*}
$$

At node V_{2}.

$$
\begin{equation*}
-i_{2}+\frac{V_{2}}{R_{2}}+c \frac{d V_{2}}{d t}=0 \tag{3}
\end{equation*}
$$

at $t=0^{+}$

$$
\begin{aligned}
& -i_{2}\left(0^{+}\right)+\frac{v_{2}\left(O^{+}\right)}{R_{2}}+\frac{c \frac{d v_{2}\left(0^{+}\right)}{d t}=0}{} 0+0+\frac{c d v_{2}\left(0^{+}\right)}{d t}=0 \\
& \Rightarrow \quad \frac{d v_{2}\left(0^{+}\right)}{d \tau}=0
\end{aligned}
$$

diff (1)

$$
\text { eqn(1) } i(t)=\frac{V_{1}}{Q_{1}}+i\left(0^{+}\right)
$$

$$
\frac{d v_{1}\left(0^{+}\right)}{d t}=R_{1}\left[\frac{d i\left(0^{+}\right)}{d t}-\frac{R_{1}}{L} i\left(0^{t}\right)\right]
$$

$$
\begin{aligned}
& \frac{d i(t)}{d t}+\frac{1}{R_{1}} \frac{d v_{1}\left(0^{t}\right)}{d t}+i_{L}\left(0^{+}\right)=0 \text {. } \\
& \frac{d i}{d t} \neq-d \\
& \frac{d i(t)}{d t}=\frac{1}{R} \frac{d V_{1}}{d t}+\frac{d i_{L}}{d t} . \\
& \frac{d i}{d \tau}\left(O^{\top}\right)=\frac{1}{R} \frac{d V_{1}}{d \tau}\left(O^{\top}\right)+\frac{R_{1} i\left(O^{\top}\right)}{L} \\
& \frac{d_{i}}{d c}\left(t^{t}\right)=\frac{1}{L}\left[L_{1}-v_{2}\right] \\
& =\frac{1}{L}\left[R, 1\left(O^{7}\right)-0\right] \\
& =\frac{R, i\left(0^{+}\right)}{L} \\
& V=L \frac{d i L}{d t} \\
& \left.\because i_{L}=\frac{1}{L} \int v_{1}-v_{2}\right) d \\
& \frac{d i_{1}}{d t}=\frac{V_{1}-V_{2}}{r} \\
& \frac{1}{R} \frac{d v_{1}\left(0^{+}\right)}{d t}=\left[\frac{d i\left(0^{+}\right)}{d t}-\frac{R_{1} i\left(O^{+}\right)}{L}\right]
\end{aligned}
$$

9). In the ekt shown. the switch k is at $t=0$ S.T. at $t=0^{+}$,

$$
\begin{aligned}
& \frac{d i_{1}}{d t}=\frac{v_{0}}{R}\left[\omega \cos \omega t-\frac{\sin \omega t}{R c}\right] \quad \& \\
& \frac{d i_{2}}{d t}=\frac{V_{0} \sin \omega t}{\nu}
\end{aligned}
$$

At $t=0^{+}$

$$
i_{1}\left(0^{+}\right)=\frac{V_{0} \sin \omega t}{R} \quad i_{2}\left(0^{+}\right)=0
$$

Writing lioop eqn for is

$$
\begin{equation*}
V_{0} \sin \omega t=i_{1} R_{a}+\frac{1}{c} \int i_{1} d t \tag{1}
\end{equation*}
$$

- loopeqn for ìz.

$$
\begin{align*}
& \text { for } i_{2} \\
& V_{0} \sin \omega t=i_{2} R+L \frac{d i_{2}}{d t}
\end{align*}
$$

diff 10

$$
\begin{aligned}
& R \frac{d i n}{d t}+\frac{i}{c}=V_{0}(\cos \omega t) \omega \\
& R \frac{d i_{1}\left(O^{+}\right)}{d t}+\frac{i\left(O^{+}\right)}{C}=V_{0} \omega \cos \omega t \\
& R \frac{d_{n}\left(O^{+}\right)}{d t}=V_{0} \omega \cos \omega t-\frac{i\left(0^{+}\right)}{C} \\
& \frac{d_{i}\left(O^{+}\right)}{d t}=V_{0} \omega \cos \omega t-\frac{V_{0} \sin \omega t}{R c}
\end{aligned}
$$

$$
\begin{aligned}
& V_{0} w \cos w t=\frac{d i_{2}}{} \cdot R+\frac{1}{d} \\
& \frac{d i 2}{d L}=\frac{1}{L}\left[V_{0} \text { sintat }-i_{2} \cot \right) R=\frac{V_{0}}{L} \sin \omega t \text {. PAge } 195
\end{aligned}
$$

In the n/wo shown switch k is closed at $t=0$. The now being initially unenergised. find $i_{1}\left(0^{+}\right), i_{2}\left(0^{+}\right), \frac{d i_{1}\left(0^{+}\right)}{d t}, \frac{d_{i 2}\left(0^{+}\right)}{d y}, \frac{d_{1}^{2}}{d t^{2}}\left(0^{+}\right)$

$$
\begin{align*}
& \frac{d^{2} i_{2}\left(0^{+}\right)}{d t^{2}} \\
& V=\frac{1}{c} \int i_{1} d t+R_{1}\left(i_{1}-i_{2}\right) \\
& \quad-R_{1}\left(i_{2}-i_{1}\right)+R_{2}+i_{2}+L \frac{d i_{2}}{d t}=0 \tag{1}
\end{align*}
$$

at $t=0^{+}$,

from (2)

$$
\begin{aligned}
& -R_{1} \theta_{1}\left(O^{+}\right)+i_{2}\left(O^{+}\right)\left(R_{1}+R_{2}\right)+\frac{L d_{2}\left(O^{+}\right)}{d t}=0 . \\
& -R_{1} \frac{V}{R x}+0+\frac{d i_{2}\left(O^{+}\right)}{d t}=0 . \\
& L \frac{d i_{2}\left(O^{+}\right)}{d t}=V \Rightarrow \frac{d i_{2}\left(O^{+}\right)}{d t}=\frac{V}{L}
\end{aligned}
$$

diff (1)

$$
\begin{align*}
& 0=\frac{i_{1}\left(0^{+}\right)}{c}+\frac{d i_{1}\left(0^{+}\right)}{d t} R_{1}-R \frac{d i_{2}\left(0^{+}\right)}{d t}=0 \\
& =\frac{v}{R_{1} c}+\frac{d_{1}\left(0^{+}\right)}{d r} R_{1}-R_{1} \frac{v}{r}=0 \text {. } \\
& {\text { di }\left(g_{t}^{+}\right)}_{g_{t}}^{2} R_{1}=+V\left(\frac{R_{1}}{2}-\frac{R_{1} C}{R_{1} c}\right) \Rightarrow \frac{d_{\frac{i}{1}(0+}^{d t}}{L}=\frac{V}{R_{1}}\left(\frac{R_{1}}{L}-\frac{1}{R_{1} C}\right) \\
& \text { Page } 196
\end{align*}
$$

diff eqn (2).

$$
\begin{aligned}
& -R_{1} \frac{d i_{1}}{d t}+R_{1} \frac{d i_{2}}{d t}+R_{2} \frac{d i_{2}}{d t}+\frac{L \frac{d i_{2}}{d t^{2}}=0.001 R_{1}}{d}=0 \\
& -R_{1}^{\prime}\left[\frac{v}{R_{1}}\left(\frac{R_{1}}{L}-\frac{1}{R_{1} c}\right)\right]+R_{1}\left(\frac{V}{L}\right)+R_{2} \frac{V}{L}+L \frac{d_{i 2}^{2}}{d t^{2}}=\text { In und } \\
& -v\left(\frac{R_{1}}{L}-\frac{1}{R_{1} C}\right)+\frac{v}{L}\left(R_{1}+R_{2}\right)+\frac{L d i_{2}^{2}}{d E^{2}}=0 \text {. } \\
& -\frac{V}{L}\left(R_{L}-\frac{L}{R_{1} C}\right)+\frac{V}{L}\left(R_{1}+R_{2}\right)+L \frac{d i_{2}^{2}}{d t^{2}}=0 \text {. } \\
& -v R_{1}+\frac{V L}{R_{1} c}+v R_{1}+\frac{v R_{2}}{Q}+t^{2} \frac{d i_{2}^{2}}{d t^{2}}=0 \text {. } \\
& L^{2} \frac{d i_{2}^{2}}{d c^{2}}=-\frac{V}{V}\left(\frac{L}{R_{1} C}+\frac{R_{2}}{}\right) \text {. } \\
& \frac{d i_{2}^{2}}{d t^{2}}=-\frac{V}{L^{2}}\left(\frac{L}{R_{1} C}+\frac{R_{2}}{}\right) \\
& =-V\left[\frac{1}{R_{1} L C}+\frac{R_{2}}{L^{2}}\right]
\end{aligned}
$$

diff eqn (3).

$$
\begin{aligned}
& \frac{1}{c} \frac{d i_{1}}{d t}+R_{1} \frac{d^{2} i_{1}}{d t^{2}}-R_{1} \frac{d^{2} i_{2}}{d t^{2}}=0 \\
& \frac{1}{c}\left(\frac{v}{L}-\frac{v}{R_{1}^{2} c}\right)+R_{1} \frac{d^{2} i_{1}}{d t^{2}}-R_{1} \frac{Q^{2} v_{2}}{d t^{2}} \Theta\left[(-v)\left(\frac{1}{R_{1} L C}+\frac{R_{2}}{L-}\right)\right] \text {. } \\
& \int \frac{1}{C}\left(\frac{v}{L}-\frac{v}{R_{1}^{2} C}\right)+R_{1} \frac{d^{2} \dot{u}_{1}}{d t^{2}}+R_{1} v\left(\frac{1}{R_{1} L C}+\frac{R_{2}}{L^{2}}\right)=0 \text {. } \\
& \left\{R_{1} \frac{d_{i}^{2} i_{1}}{d t^{2}}=-\left(\frac{V}{L C} \cdot-\frac{V R_{1} R_{2}}{L^{2}}\right)-\frac{V}{C L}+\frac{V}{R_{1}{ }^{2} C^{2}}\right. \text {. } \\
& =-\frac{2 V}{L C}-\frac{V R_{1} R_{2}}{L^{2}}+\frac{V}{R_{1}^{2} C^{2}} \text {. } \\
& \frac{d^{2} \omega^{\prime}}{d c^{2}}=\frac{1}{R}\left[\frac{1}{c}\left(\frac{V}{R_{1}^{2} C}-\frac{V}{L}\right)-V R_{1}\left(\frac{1}{R_{1} L C}+\frac{R_{2}}{L^{2}}\right)\right] \text {. }
\end{aligned}
$$

top , Whe oke khowow Sheitce k is closed at $t=0$, cownwting the batery to an energied Dyw Deteomione
i) v_{1} and v_{2} ad $t=0^{1}$ \& $t a \infty$
(2.) $1^{8 L}$ of Recond olerivalive if $V_{1} \& V_{2}$ at $L=0^{-1}$

at $t=O^{(1)}$

$$
\left.\begin{array}{rr}
\square & R_{1} \\
2 a
\end{array} \right\rvert\, A_{1} \frac{1}{3} R_{2}
$$

$$
\begin{array}{ll}
1 \rightarrow 0 C \\
i_{2}\left(0^{+}\right)=0 \quad & c \rightarrow S C
\end{array}
$$

$$
i_{1}\left(0^{+}\right)=\frac{v}{R_{1}}
$$

θ

$$
\begin{aligned}
& v_{1}+v_{2}=0 . \text { but } \quad v_{2}\left(0^{+}\right)=0 \\
& v_{1}=0 \quad \Rightarrow \quad v_{1}\left(0^{\prime}\right)=0
\end{aligned}
$$

At $t=\infty, \quad, \rightarrow S C \quad C$ acte as OC.

$$
\begin{array}{ll}
\infty, & H \\
V_{1}(\infty)=0 & V_{2}(\infty)=\frac{N}{R_{1}+R_{2}} R_{2} .
\end{array}
$$

In the eke shown the capacitor is initially uncharged, switch k is closed at time $b=0$. \because The initial value of current it found to be 25 mot through CRO. The transient discappras (Reduces Dy of its initial value) after a time 0.1 Rec. By Beashical mermesthed Nw i) the value of R ii) value of C
(iii) expression for the current $i(t)$ for $t>0$.
 when $k^{t^{+}}$is closed at $t=0$,

solving sols or o (RS

$$
(R S G+1)=0 \quad \& \quad S=-\frac{1}{R C}
$$

diff (1)
$R C\left(\frac{-1}{R C}\right) \quad i=k e^{t+t} \Rightarrow i=k e^{t / k c}$ where k is consetert

$$
\begin{aligned}
& i=k e \Rightarrow \quad i=k, \quad i\left(0^{+}\right)=25 \mathrm{~m} A \text { (given) } \\
& \text { at } t\left(0^{+}\right) \quad k e^{\prime}(R C)=k
\end{aligned}
$$

$$
25 m=k e^{-(0 / R c)}=k
$$

$$
e^{0}=1
$$

$$
\begin{aligned}
\therefore \quad k & =25 \mathrm{~m} \\
i & =25 \times 10^{-3} e^{-t / R O}
\end{aligned}
$$

At $t=\theta^{+}, C \rightarrow S C$.

$$
\begin{aligned}
& i\left(0^{+}\right)=\frac{V}{R}=\frac{200}{R}= 25 \mathrm{~mA} \\
&\left(\frac{200}{R}=25 \mathrm{~m} \Rightarrow R=\frac{200}{25 \mathrm{~m}}=8000 \Omega\right. \\
& R=8 \mathrm{kS} .
\end{aligned}
$$

After 0.1 Rec

$$
\begin{aligned}
& i=2 \% \text { of initial } V \text {. } \\
& =\frac{2}{100} \times 25 \times 10^{-3} \text {. } \\
& \frac{2}{400} \times 25 \times 10^{-3} \equiv k e^{-t / R C} \text {. } \\
& \text { 8 } 5 \times 10^{-4}=25 \times 10^{3} e^{-0,1 / R C} \text {. } \\
& e^{-0.1 / R C}=\frac{5 \times 10^{-4}}{25 \times 10^{-3}}= \\
& e^{-0.1 / 20}=\frac{1}{50} \text {. } \\
& e^{-t}=\frac{1}{e^{t}} . \\
& \text { Q } \frac{1}{e^{0,1 / 2 c}}=\frac{1}{50} \\
& e^{0.1 / R c}=50 \text {. } \\
& \frac{0.1}{R C}=\ln (50)=3,91 \text {. } \\
& \frac{0.1}{R C}=3.91 \\
& R C=\frac{0.1}{3.91}=0.0256 \text {. } \\
& c=\frac{0.0256}{\rho}=\frac{0.0256}{8 K}=8.195 \mu \mathrm{~K} .
\end{aligned}
$$

NETWORK ANALYSIS (18EC32)

Syllabus:-

Module -4

Laplace Transform and its Applications

Laplace transformation

$$
L[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

where $S=\sigma+\hat{\jmath} \omega$ is a complex number. provided $\int_{0}^{\infty}|t(t)| e^{-t} d t<\infty$ for real the σ.
$S=6+\hat{j} \omega$ is a complex number.
Laplace transform of standard functions

1. unit step function

$$
f(t)=u(t)
$$

$$
\begin{aligned}
u(t) & =1 \quad \text { for } t \geqslant 0 \\
& =0 \quad \text { for } t<0^{-}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}[u(t)]=\int_{0}^{\infty} 1 \cdot e^{s t} \cdot d t & =\left[\frac{e^{-s t}}{-s}\right]_{0}^{\infty}=-\frac{1}{s}\left[e^{-s t}\right]_{0}^{\infty} \\
& =-\frac{1}{s}\left[e^{-\infty}-e^{-0}\right]=-\frac{1}{s}[0-1] \\
& =\frac{1}{s}
\end{aligned}
$$

$$
\alpha[u(t)]=\frac{1}{s}
$$

2. $f(t)=e^{a t}$ where a is constant.

$$
\begin{aligned}
& f(t)=e^{a t} \text { where } a \text { is constant. } \\
& \begin{aligned}
& \alpha\left[e^{a t}\right]=\int_{0}^{\infty} e^{a t} e^{-s t} d t=\int_{0^{-}}^{\infty} e^{-(s-a) t} d t=\left[\frac{-1}{(s-a)} e^{-(s) t}\right]_{0}^{b} \\
&=\frac{-1}{s-a}\left[e^{-\infty}-e^{a}\right]=\frac{-1}{s-a}[0-1]=\frac{1}{s-a} \\
& \alpha\left[e^{a t}\right]=\frac{1}{s-a}
\end{aligned}
\end{aligned}
$$

3s4. $f(t)=\sin \omega t$ and $f(t)=\cos \omega t$

$$
\begin{aligned}
\alpha\left[e^{j \omega t}\right] & =\mathcal{L}[\cos \omega t+\hat{\jmath} \sin \omega t] \\
& =\frac{1}{s-\hat{\jmath} \omega} \times \frac{s+\hat{\jmath} \omega}{s+\hat{\jmath} \omega} \\
& =\frac{s}{s^{2}+\omega^{2}}+\hat{\jmath} \frac{\omega}{s^{2}+\omega^{2}} \\
\alpha[\sin \omega t] & =\frac{\omega}{s^{2}+\omega^{2}} \\
\alpha[\cos \omega t] & =\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } f(t)=t^{n} \\
& \alpha\left[t^{n}\right]=\int_{0}^{\infty} t^{n} e^{-s t} d t . \\
&=\left.t^{n} \frac{e^{-s t}}{-s}\right]_{0}^{\infty}-\int_{0}^{\infty}\left(\frac{e^{-s t}}{s}\right) n \cdot t^{n-1} \cdot d t \\
&=t^{n}(0-0)+\frac{n}{s} \int_{0}^{n-1} t^{-s t} d t \\
&= \frac{n}{s} \alpha\left[t^{n-1}\right] \\
&= \frac{n}{s} \frac{(n-1)}{s} \alpha\left[t^{n-2}\right] \\
&= \frac{n}{s} \frac{(n-1)}{s} \cdot\left(\frac{n-2)}{s} \cdot \frac{2}{s} \cdot \frac{1}{s} \alpha\left[t^{n-n}\right]\right. \\
&= \frac{n}{s} \frac{(n-1)}{s} \frac{(n-2)}{s} \ldots \frac{2}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} \\
& \alpha\left[t^{n}\right]=\frac{n!}{s^{n+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left[t^{(n-1)}\right]=\frac{(n-1)!}{(n-1)+1}=\frac{(n-1)!}{s^{n}} \\
& \mathcal{S}\left[t^{3}\right]=\frac{3!}{s^{n}} \\
& \mathcal{L}\left[t^{2}\right]=\frac{2!}{s^{3}} \\
& t^{n} f(t) \\
& \mathcal{L}[f(t)]=F(s)=\int_{0}^{\omega} f(t) e^{-s t} d t \\
& L[t)]=F^{\prime}(s)=\int_{0}^{\infty}(f t)+(t) e^{-s t} d t=\mathcal{L}[-t f(t)]
\end{aligned}
$$

$$
\begin{aligned}
& \alpha\left[f^{\prime \prime}(t)\right]=F^{\prime \prime}(s)=\int_{0}^{\infty} t^{2} f(t) e^{-s t} d t=\mathcal{L}\left[t^{2} f(t)\right] \\
& \vdots \\
& \alpha\left[f^{n}(t)\right]=F^{n}(s)(-1)^{n}=\int_{0}^{\infty} t^{n} f(t) e^{-s t} d t \\
& \therefore \alpha\left[t^{n} f(t)\right]=(-1)^{n} f^{n}(s) .
\end{aligned}
$$

7) $f(t)=\sinh \omega t$.

$$
\begin{aligned}
& \mathcal{L}[\sinh \omega t]=\mathcal{L}\left[\frac{e^{\omega t}-e^{-\omega t}}{2}\right] \\
& =\frac{1}{2}\left[\frac{1}{s-\omega}-\frac{1}{s+\omega}\right] \frac{-1}{2}\left[\frac{s+\omega-s+\omega}{s^{2}-\omega^{2}}\right]=\frac{1}{2}\left[\frac{2 \omega}{s^{2}-\omega^{2}}\right] \\
& \mathcal{L}[\sinh \omega t]=\frac{\omega}{s^{2}-\omega^{2}}
\end{aligned}
$$

8) $\quad f(t)=\cosh \omega t$.

$$
\begin{aligned}
& \text { 8) }[\cosh \omega t]=\mathcal{L}\left[\frac{e^{\omega t}+e^{-\omega t}}{2}\right]= \\
& =\frac{1}{2}\left[\frac{1}{s-\omega}+\frac{1}{s+\omega}\right]=\frac{1}{2}\left[\frac{2 s}{s^{2}+\omega^{2}}\right] \\
& \left.\mathcal{L}[\cosh \omega t]=\frac{s}{s^{2}+\omega^{2}}\right]
\end{aligned}
$$

9] Laplace transform of derivatives

$$
\begin{aligned}
& \text { a] Laplace transform }\left[f^{\prime}(t)=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t=\left[e^{-s t} f(t)\right]_{0}^{\infty}-\int_{0}^{\infty} f(t) e^{-S t}(-s) d\right. \\
& =-f(0)+S \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =S F(S)-f\left(0^{-}\right)
\end{aligned}
$$

In general

$$
\begin{equation*}
\mathcal{L}\left[f^{n}(t)\right]=s^{n} F(s)-s^{n-1} f\left(0^{-}\right)-s^{n-2} f^{\prime}(0)-\ldots-f^{n-1} \tag{-}
\end{equation*}
$$

Laplace transform of integrals

$$
\begin{aligned}
& \mathcal{L}\left[\int_{0}^{t} f(t) d t\right]=\int_{0}^{\infty}\left[\int_{0}^{t} f(t) d t\right] e^{-s t} \cdot d t \\
& =\left[-\frac{e^{-s t}}{s} \int_{0}^{t} f(t) d t\right]_{0}^{\infty}+\int_{0}^{\infty} f(t) \frac{e^{-s t}}{s} d t \cdot \int_{0}^{\text {p.inst driven } x} \text { derivation of } \\
& =0+\frac{F(S)}{S}
\end{aligned}
$$

If the integral has the limits $-\infty$ to t instead of $\left(0^{-}\right)_{t o t} t$, then

$$
\int_{-\infty}^{t} f(t) d t=\int_{-\infty}^{0} f(t) d t+\int_{-\infty}^{t} f(t) d t
$$

The first term on the rings and hand be represented as $f(-\infty)$ or $f\left(0^{-}\right)$

$$
\therefore \mathcal{L}\left[\int_{-\infty}^{t} f(t) d t\right]=\mathcal{L}\left[f\left(0^{-}\right)+\int_{0^{-}}^{t} f(t) d t\right]=\frac{f\left(0^{-}\right)}{S}+\frac{F(s)}{S}
$$

if $f(t)$ is a current, then $f\left(0^{\circ}\right)$ represents the initial charge $q\left(0^{-}\right)$. If $f(t)$ is a voltage, then $f\left(0^{-}\right)$represents flue linkages $\psi\left(0^{-}\right)=\operatorname{Li}\left(0^{\circ}\right)$.
$f\left(0^{-}\right) \Rightarrow i(t) \rightarrow v(t) \rightarrow$ initial charge $q\left(0^{-}\right)$ $V(t) \rightarrow$ flux linkage $\psi\left(0^{-}\right)=L i\left(0^{\circ}\right)$.
11. property of linearity:

$$
\begin{aligned}
F(s) & \rightarrow t(t) \text { then } \\
\mathcal{L}[k f(t)] & =k \mathcal{L}[t(t)]=k F(s) \text { where }
\end{aligned}
$$

12. Property of Superposition

If $F_{1}(S), F_{2}(S) \cdots F_{n}(S)$ are the Laplace trangforn ? $f_{1}(t), f_{2}(t), \ldots f_{n}(t)$ then

$$
2\left[f_{1}(t)+f_{2}(t)+\cdots f_{n}(t)\right]=F_{1}(s)+F_{2}(s)+\cdots F_{n}(s)^{3}
$$

Inverse Laplace transform 7

$$
\left.\begin{array}{l}
f(t)=\alpha^{-1}[F(s)] \\
f(t)=\frac{1}{2 \pi \hat{d}} \int_{\sigma_{1}-\gamma \infty}^{\sigma_{i}+\hat{\gamma} \infty} F(s) e^{s t} d t
\end{array}\right\} \Rightarrow \text { Not and }
$$

Complex inverse integral.
If $F(S)$ is not in standard form for which $f(t)$ can be readily found, it mus be Converted into the std form and then its inverse. is found.

Th uniqueness property of Laplace transformat on 1.e no two different functions have the same Laplace transformation, helps to find $f(t)$ for given $F(s)$.
$E_{\text {Es procedure to }}$ we Laplace trenefformasion
The integro differential equations are written for given msw.
2. On applying $L T$, le transformed eqns are written, inserting the initial conditions to them 3. The transformed eqns are manipulated algebraically, such that they are in std forms for which inverse $L T$ com be found.
L. The inverse LT of ares eqns give required sols

Fire shifting etworem
If $F(S)$ is $L T$ of $f(t)$ then

$$
\begin{gathered}
\mathcal{L}\left[e^{-a t} f(t)\right]=F(s+a) \\
\text { ex: } \alpha[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}, \alpha\left[e^{-a t} \sin \omega t\right]=\frac{\omega}{(s+a)^{2}+\omega^{2}}
\end{gathered}
$$

Second shifting tevorum:
If $\alpha[f(t)]=F(s)$ then $\alpha[f(t-a) u(t-a)]=e^{-a s} F(s)$

$$
e x: \alpha[t u(t)]=\frac{1}{s^{2}} \quad \therefore \alpha[(t-a) u(t-a)]=e^{-a s} \frac{1}{s^{2}}
$$

Convolution theorem:
If $F_{1}(s)$ and $F_{2}(s)$ are Laplace twaneforme $f_{1}(t)$ and $t_{2}(t)$ respectively then

$$
\begin{array}{r}
\left.\alpha \int_{0}^{t} f_{1}(\tau) b_{2}(t-J) \alpha \tau=\alpha \int_{0}^{t} f_{1}(t-\tau) f_{2}(J) d J\right) \\
=\alpha\left[f_{1}(t) \times t_{2}(t)\right]=F_{1}(S) F_{2}(S)
\end{array}
$$

1.e LT of convolution of 2 fum = predict i Page 209

Initial value theorem:
This theorem helps us to find the init nix Value of function $f(t)$ directly from the te arrefornal functions $F(S)$
Statement: If $f(t)$ and $f^{\prime}(t)$ are haplace transfer then the behaviour of $f(t)$ in the neighborhood $t=0^{-}$corresponds to the behavour of $S F(S)$ in the neighbourhood of $S=\infty$.
1.e $\quad f\left(O^{-}\right)=\operatorname{Lt}_{t \rightarrow 0^{\circ}} f(t)=\operatorname{Lt}_{S \rightarrow \infty} S F(S)$

Final value therotens:
This twarem helps us to find the final value function $f(t)$ directly from transformed function

$$
\text { Le } f(\infty)=\operatorname{Lt}_{t \rightarrow \infty} f(t)=\operatorname{lt}_{S \rightarrow 0} S F(s)
$$

aplace transform of periodic funct ins:-
$f(t)$ be a periodic function with τ as period.
${ }^{\text {mag. }}$, et $f(t), f_{2}(t), f_{3}(t) \ldots$ represent the first, second, third, .. etc cycles of the periodic wave. Then

な

$$
\begin{aligned}
& f(t)=f_{1}(t)+f_{2}(t)+f_{3}(t)+\cdots \\
& =f_{1}(t)+f_{1}(t-5) u(t-5)+f_{1}(t-25) u(t-25) \\
& \quad+f_{3}(t-35) u(t-35)+
\end{aligned}
$$

Then $F(s)=F_{1}(s)+e^{-5 s} F_{1}(s)+e^{-25 s} F_{7}(s)+e^{-35 s} F_{1}(s)+\ldots$.

$$
\begin{aligned}
& =F_{1}(s)\left[1+e^{-s s}+e^{-2 s s}+e^{-3 s s}+\cdots\right] . \\
& =F_{1}(s)\left[1-e^{-5 s}\right]^{-1} \\
& F(s)=\frac{F_{1}(s)}{1-e^{-5 s}}
\end{aligned}
$$

Transformed news:
For sobering electrical $n / w s$ wing $L T$, it is necessary for us to know the transformed equivalents of ore the elements present in the New, considering initial values on them.

The elements $\rightarrow R, L, G$.

1) Resistance:

thin transformed n/ue is We can obserned luact, resistance rumains unchanged in the

2) The inductance:
$i(t)$

$$
\begin{align*}
& e(t)=L \frac{d i}{d t} \\
& E(s)=L\left[S I(s)-i\left(0^{-}\right)\right] \\
& E(s)-L S I(s)+L i\left(0^{\circ}\right)=0 . \\
& E(s)=\frac{E(s)+L i\left(0^{-}\right)}{L s} \tag{1}
\end{align*}
$$

The tranffornd ckt Satirfying eqn is shoun

eqn(1) can be writtion as

$$
\begin{equation*}
I(s)=\frac{E(s)}{L \delta}+\frac{i\left(0^{-}\right)}{s} \tag{2}
\end{equation*}
$$

The tarneforned ekt for eqn 2 may be

The copocitance:

$$
c=\frac{q}{v}=q=c_{v}
$$

$$
\begin{aligned}
i(t) & =C \frac{d q(t)}{d t} \\
I(B) & =C\left[S E(S)-V_{c}\left(0^{-}\right)\right] \\
& =C S E(S)-C V_{c}\left(0^{-}\right) \\
I(S) & =\frac{E(S)}{1 / c s}-C V_{c}\left(0^{-}\right)
\end{aligned}
$$

 $E(S)=\frac{\frac{I(S)}{S} S^{\circ}+\frac{V C(O)}{\text { twainermed }} \text { cher satsfying eqn (1) is }}{\text { The }}$ The eqn (1) can also be writhes

$$
\frac{\sqrt{E(S)=} \frac{I(S)}{c s}+\frac{V_{c}\left(0^{-}\right)}{s i}}{\left\{\begin{array}{l}
r(s)+c v_{c}(0)-\frac{E(s)}{} \\
\frac{c(s)}{c s}+v_{c}(0)
\end{array}\right.}
$$

Laplace transformation.
For the che shown, find an expreession for i($t)$, when the switch k is closed at $t=0$.

when k is closed at $t=0$.

$$
\begin{aligned}
& R \frac{d i}{d t}+R i=E . \\
& L\left[S I(S)-I(0) \theta^{-}\right]+R I(S)=\frac{E}{-S} \\
& i\left(0^{-}\right)=i\left(0^{+}\right)=0 \text {. } \\
& I(S)[L S+R]=\frac{E}{S^{\prime}} \text {. } \\
& I(S)=\frac{E}{S(L S+R)}=\frac{E}{S L\left(S+\frac{R}{L}\right)} \\
& =\frac{E}{L} \cdot \frac{1}{S\left(S+\frac{R}{L}\right)} \\
& =\frac{E}{R T R} \\
& =\frac{E}{2}\left[\frac{A}{S}+\frac{B}{S+\frac{R}{L}}\right] \\
& =\frac{E}{L}\left[\begin{array}{r}
\left.\frac{L / R}{S}-\frac{L / R}{S+R / L}\right] \\
L-R / L t
\end{array}\right. \\
& \left\{\begin{array}{c}
\frac{A}{S}+\frac{B}{S+R / 2} \\
A=\left(\frac{1}{S+L / L}\right)_{S=0} A \Rightarrow L / R \\
B=\left.\frac{1}{S}\right|_{S=-R / L}=B \Rightarrow-
\end{array}\right. \\
& \left\{\begin{array}{c}
\frac{A}{S}+\frac{B}{S+R / 2} \\
A=\left(\frac{1}{S+L / L}\right)_{S=0} A \Rightarrow L / R \\
B=\left.\frac{1}{S}\right|_{S=-R / L}=B \Rightarrow-
\end{array}\right. \\
& =\frac{E}{L}\left[\frac{L}{R}-\frac{L}{R} e^{-R / L t}\right] . \\
& i(t)=\frac{E}{R}\left[1-e^{-\frac{R}{L} t}\right] \\
& \left\{\begin{array}{c}
\frac{A}{S}+\frac{B}{S+R / 2} \\
A=\left(\frac{1}{S+R / L}\right)_{S=0} A \Rightarrow H / R \\
B=\left.\frac{1}{S}\right|_{S=-R / L}=B \Rightarrow-
\end{array}\right.
\end{aligned}
$$

son
2) For ith che steresom, fiond ane expreaskien for $i(t)$, thetere athe swatech k is clesed at $t=0$. Assunve What stave is whe inutal Chasy on the Capaliter

when Swith h is cloked at $k=0$.

$$
\begin{aligned}
& c=\frac{q}{V} \\
& q=c V
\end{aligned}
$$

$$
R:+\frac{1}{c} \int i d t=E
$$

ou taking kT

$$
\begin{aligned}
& 2 I(s)+E\left[\frac{r(s)}{c^{s}}-\frac{((0)}{s}\right]=\frac{E}{s} \\
& I(S)\left[R+\frac{1}{C S}\right]=\frac{E}{S} \\
& I(S)=\frac{E}{S\left(R+\frac{1}{C S}\right)}=\left(\frac{E}{S R+\frac{1}{G}}\right) \\
& =\frac{E}{R\left(S+\frac{1}{C R}\right)}= \\
& =\frac{E}{R}\left(\frac{1}{S+\frac{1}{C R}}\right) \\
& i(L)=\frac{E}{R} \bar{c}^{t / R G}
\end{aligned}
$$

3) In the eke shown in fig, if the capacitor is initially charged to IV, find an expression for $i(t)$ when the switch k is closed at $t=0$.

$$
\begin{aligned}
& R I(S)+S I(S)+\frac{2}{S} I(S)=\frac{1}{S} \\
& I(S)\left(R+S+\frac{2}{S}\right)=\frac{1}{S}
\end{aligned}
$$

$$
1(s) \quad \frac{S R+s^{2}+2}{8}=\frac{1}{8}
$$

$$
I(S)=\frac{1}{S^{2}+S R+2}=
$$

$$
\quad R=2 R
$$

$$
R=2 \Omega
$$

$$
i(t)=e^{-t} \sin t
$$

In the cat show en, the switch k is closed and the steady state is reached. At $t=0$, the switch of opened. Find the expression for the current in eh induct or evsing Laplace transform.

Initially switch k is closed and the echt is enter steady state Condition.
\therefore hence L acts as serort cke \& C acts as open ce

$$
\begin{aligned}
& i\left(0^{-}\right)=\frac{100}{10}=10 \mathrm{~A}=1\left(0^{+}\right) \\
& V_{c}\left(0^{+}\right)=0=V_{c}\left(0^{+}\right) \quad \because q\left(0^{\circ}\right)=0=q\left(0^{+}\right)
\end{aligned}
$$

when k is opened.

$$
\begin{aligned}
& \mathcal{L} \frac{d_{i}}{d t}+\frac{1}{c} \int i d t=0 \text {. } \\
& L\left[S I(S)-i\left(O^{-}\right)\right]+\frac{1}{(S S}\left[\frac{I(S)}{C S}+\frac{d\left(0^{-}\right)}{S}\right]=0 \\
& \operatorname{LSI}(S)-L i\left(O^{-}\right)+\frac{I(S)}{C S}=0 \text {. } \\
& \operatorname{LSI}(S)-10 L+\frac{I(S)}{10 \mu E S}=0 \text {. } \\
& S I(S)+\frac{I(S)}{10^{-5} \mathrm{~S}}=10 \\
& I(s)\left[S+\frac{10^{5}}{S}\right]=10 \text {. } \\
& I(s)\left[\frac{s^{2}+10^{5}}{s}\right]=10 \text {. } \\
& I(s)=\frac{10 s}{s^{2}+10^{5}}=\frac{10 s}{s^{2}+\left(10^{\frac{5}{2}}\right)^{2}} \\
& I(t)=10 \cos 10^{(5 / 2} z .
\end{aligned}
$$

1) In the n/w shower, switch k is closed and steady state is reached. At $t=0$, the switch is opined. Find the expression for the current in the inductor using Laplace transform

when k is closed, the ekt is undue steady State Condition \sim acts as $S C$ \& $C \rightarrow 0 . C$ $t=0^{-}$

$$
\begin{aligned}
& i\left(0^{-}\right)=i\left(0^{+}\right)=\frac{100}{10}=10 \mathrm{~A} \\
& V_{c}\left(0^{-}\right)=0=V_{c}\left(0^{+}\right) \\
& \text {ed } \quad q\left(0^{-}\right)=0=q\left(0^{+}\right)
\end{aligned}
$$

when k is opened

$$
L \frac{d i}{d t}+\frac{1}{c} \int i d t=0
$$

$$
\begin{aligned}
& \text { Taking LSS.T } \\
& \left.L\left[S I(S)-i\left(0^{-}\right)\right]+\frac{I}{C S}-\frac{I(S)}{S}\right]=0 \\
& 1[S I(S)-10]+\frac{1}{10 \times 10^{-6}}\left[\frac{I(S)}{S}\right]=0 \\
& I(S)\left[S+\frac{10^{5}}{S}\right]=10
\end{aligned}
$$

$$
\begin{aligned}
I(s) & =\frac{10}{s+\frac{10^{5}}{s}}=\frac{10 s}{s^{2}+10^{5}} \\
& =\frac{10 s}{s^{2}+\left(10^{5 / 2}\right)^{2}} \\
i(t) & =10 \cos 10^{\frac{5}{2}} t
\end{aligned}
$$

Deteomine the response curoent $i^{\prime}(t)$ in au 19 ckt khown using Laplace trouneform 27

$$
\begin{aligned}
& 54(k-2)^{3} 5 i_{2}\left(0^{+}\right)=5 m \mathrm{~A} . \\
& i_{L}\left(0^{-}\right)=5 \mathrm{~mA}=i_{L}\left(0^{+}\right) \text {. } \\
& 10 I(S)+4\left[S I(S)-i\left(0^{-}\right)\right]=\frac{5 e^{-2 s}}{5} \\
& 10 I(S)+5(S I(S)]-5 \times 5=\frac{5 e^{-2 s}}{5} \\
& I(s)[10+5 s]-25 m=\frac{5 e^{-2 s}}{s^{\prime}} \\
& I(s)=\frac{5 e^{-2 s}}{s}+25 \times 10^{-3} \\
& =\frac{5 e^{-25}+\left(25 \times 10^{-3}\right) 5}{555(2+5)} \\
& =\frac{e^{-2 s}+5 \times 10^{-3} s}{s(s+2)} \\
& =\frac{e^{-2 s}}{s(s+2)}+\frac{5 \times 10^{-3}}{(s+2)} \\
& =e^{2 s}\left[\frac{A}{s}+\frac{B}{s+2}\right]+\frac{5 \times 10^{-3}}{s+2} \\
& \left.=e^{-2 s}\left[\frac{1 / 2}{s}-\frac{1 / 2}{s+2}\right]+\frac{5 \times 10^{-3}}{s+2}\right] \\
& \begin{array}{l}
A=\left.\frac{1}{s+2}\right|_{s=0}=\frac{1}{2} \\
B=\left.\frac{1}{3}\right|_{S=-2}=\frac{-1}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} e^{-2 s}\left[\frac{1}{s}-\frac{1}{s+2}\right]+\frac{5 \times 10^{-3}}{s+2} \\
& i(t)=\frac{1}{2}\left[u(t-2)-e^{-2 t} u(t-2)\right]+5 \times 10^{-3} e^{-2 t} u(t)
\end{aligned}
$$

4) Find the current $i(t)$ assuming zero initial
condit, owns, when switch k is closed at $t=0$. The excitation $V(E)$ is pulse magnitude 10 V . and durat on of 2 sec . consider $R=10 \Omega$ $C=2 F$.

$$
\begin{aligned}
& V(t)=10 u(t)-10 u(t-2)=10[u(t)-\mu(t-2)] \\
& {\left[R I(s)+\frac{1}{C}\left[\frac{I(S)}{S}\right]+\frac{V_{c}(0-)^{\prime}}{S}\right]=V(S) .} \\
& {\left[10 I(S)+\frac{1}{2} \frac{I(S)}{s}\right]=10\left[\frac{1}{s}-e^{-2 s} \frac{1}{s}\right] .} \\
& I(S)\left[10+\frac{1}{2 s}\right]=10\left[\frac{1}{s}-\frac{e^{-2 s}}{s}\right] \\
& I(S)\left[\frac{20 s+1}{28}\right]=10\left(\frac{1-e^{-2 s}}{S}\right) \\
& I(S)=\frac{20\left(1-e^{-2 s}\right)}{1+20 s}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{20\left(1-e^{-2 s}\right)}{26\left(s+\frac{1}{20}\right)}=\frac{1}{s+\frac{1}{20}}-\frac{e^{-2 s}}{s+\frac{1}{20}} \\
& i(t)=e^{-\frac{1}{20} t} u(t)-e^{-\frac{1}{20}(t-2)} u(t-2)
\end{aligned}
$$

5) The n / w shown in fig was in steady state before $t=0^{+}$. The switch is opened at $t=0$. Find $i(t)$ for $t>0$ wring L.T.

steady $c \rightarrow 0 . C$

$$
L \rightarrow S . C
$$

$$
\begin{aligned}
& i\left(0^{-}\right)=\frac{1}{1}=1 A=i\left(0^{+}\right) \\
& V_{c}\left(0^{-}\right)=I V=V_{C}\left(0^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0.5 I(S)-0.5+I(S)-\frac{1}{S}+\frac{1}{5} I(S)=0 . \\
& I(S)\left[0.5+1+\frac{1}{S}\right]=\frac{1}{S}+0.5
\end{aligned}
$$

$$
\begin{aligned}
I(s) & =\frac{\frac{1}{s}+\frac{1}{2}}{1+\frac{1}{s}+\frac{1}{2} s^{\prime}}=\frac{\frac{s+2}{2 s}}{\frac{2 s+2+s^{2}}{2 s}} \\
& =\frac{s+2}{s^{2}+2 s+2} \\
& =\frac{(s+1)+1}{(s+1)^{2}+1} \\
& \left.=\frac{s+1}{(s+1)^{2}+1}+\frac{1}{(s+1)^{2}+1} \right\rvert\, \sin \\
i(t) & =e^{-t} \cos t+e^{-t} \sin t \\
i(t) & =e^{-t}[\cos t+\sin t]
\end{aligned}
$$

s : n tote $\frac{w}{s^{2}+\omega^{2}}$ $\cos \omega t=\frac{s}{s^{2}+\omega^{2}}$
6) using LT obtain an expression for the current it in the n/w of fig. Assume zero critical Conditions

$10 I(S)+10^{-3} S I(S)+\frac{1}{\left(1 \times 10^{-6}\right) \delta} I(S)=\frac{1}{C S}$
$I(s)\left[10+10^{3} s+\frac{1}{10^{-6} s}\right]=\frac{1}{S}$.
$I(s)\left[\frac{10^{-5} s+10^{-9} s^{2}+1}{10^{-6} s}\right]=\frac{1}{s}$

$$
\begin{aligned}
& I(s)\left[\frac{10^{6}\left(10^{5} s+10^{-9} s+1\right]}{s}=\frac{1}{8}\right] . \\
& =I(S)\left[10 s+10^{3} s^{2}+10^{6}\right]=1 \\
& I(s)=\frac{1}{.10 s+10^{-3} s^{2}+10^{6}} \times \frac{10^{3}}{10^{3}} \\
& =\frac{10^{3}}{s^{2}+10^{4} s+10^{9}} \\
& =\frac{1000}{s^{2}+10,000 s+10^{9}} \\
& 105^{9} \\
& =\frac{1000}{(s+5000)^{2}+31225^{2}} \times \frac{\left(3122 s^{20}\right.}{\left(31225^{\frac{6}{2}}\right)} \times 5000550005^{10 s^{2}}=10,000 \\
& =0.032 \times \frac{31225}{(5+5000)^{2}+31225^{2}} \quad 10^{9}-(5000)^{2}= \\
& i(t)=0.032 e^{-5000 t} \sin 312 \% t .
\end{aligned}
$$

7) For the critically relaxed n / w if slow en obtain expression for the currant $(C E$) 32 use Laplace transform Given $\delta V_{i}(t)=S(t)$

$$
\begin{aligned}
& {\left[10^{6}+\frac{1}{10^{-6} s}\right] I(s)=1} \\
& {\left[\begin{array}{l}
{\left[\frac{s+1}{10^{-6} s}\right] I(s)=1} \\
I(s)
\end{array}=10^{-6}\left(\frac{s}{s+1}\right)\right.} \\
& \\
& =1-10^{-6}\left[\frac{s+1-1}{s+1}\right] \\
&
\end{aligned}=10^{-6}\left[1-\frac{1}{s+1}\right] .
$$

- The battery Vg 10 V is applied for a steady state period with switch k open. Obtain the complete expression for the cerement after closing the switch K. Use L.T.

$$
t=0^{-}
$$

$$
t=0^{+}
$$

$$
\begin{aligned}
& L \rightarrow S C \\
& i\left(0^{\circ}\right)=\frac{10 A}{3}=i\left(0^{+}\right) \\
& \begin{array}{l}
\frac{10}{S(s+1)}=\frac{A}{S}+\frac{B}{S+1} \\
A=\left.\frac{10}{S+1}\right|_{s=0}=10 \\
B=\left.\frac{10}{S}\right|_{s=-1}=-10
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& I(S)+S I(S)-\frac{10}{3}=\frac{10}{s} \\
& I(S)[1+s]=\frac{10}{s}+\frac{10}{3}=\frac{30+10 s}{3 S} \\
& I(S)= \\
& =\frac{30+10 s}{3 s(s+1)}=\frac{30^{10}}{s(s(s+1)}+\frac{10 s}{3 \phi(s+1)} \\
& =\frac{10}{s(s+1)}+\frac{10}{s+1}+\frac{10}{3+1}+\frac{10}{s+1} \Rightarrow 10 u(t)-10 e^{-t} u(t)
\end{aligned}
$$

2) Solve for $i_{L}(t)$ wing LT

$$
10 I(s)+5 s I(s)-25 \times 10^{-3}=\frac{5 e^{-2 s}}{s}
$$

$$
I(s)[10+55]=5 \frac{e^{-2 s}}{s}+25 \times 10^{-3}
$$

$$
=\frac{5 e^{-2 s}+\left(25 \times 10^{-3}\right) s}{s(10+55)}
$$

$$
=\frac{5 / e^{-2 s}+5 \times 10^{-3 s}}{5 \cdot s(s+2)}
$$

$$
=\frac{e^{-2 s}}{s(s+2)}+\frac{5 \times 10^{-3}}{s+2}
$$

$$
\begin{aligned}
& =e^{-2 s}\left[\frac{A}{s}+\frac{B}{s+2}\right]+\frac{5 \times 10^{-3}}{s+2} \\
d(s) & =e^{-2 / s}\left[\frac{\frac{1}{2}}{s}-\frac{1 / 2}{s+2}\right]+\frac{5 \times 10^{-3}}{s+2}
\end{aligned}
$$

$$
A=\left.\frac{1}{s+2}\right|_{s=0}=\frac{1}{2}
$$

$B=\left.\frac{1}{s}\right|_{S=-2}=-\frac{1}{2}$.
$(t)=\frac{1}{2}\left[u(t-2)-e^{-2 t-2} \cdot u(t-2)\right]+5 \times 10^{-3} e^{-2 t} \cdot u(t)$.

For the che shown in fig, the switch is closed at $t=0$, The initial current through dew inductance is $2 A$. Obtain the expression for $v_{0}(t)$ for $t \geqslant 0$.

$$
\begin{align*}
& I_{1}(S)+2 S\left(I_{1}(s)-I_{2}(S)-4=\frac{10}{S}\right. \tag{E}\\
& I_{1}(S)[1+2 S]-2 S I_{2}(S)=\frac{10}{S}+4=\frac{10+4 s}{S} \\
& H_{1} I_{2}(S)+4+2 S\left(I_{2}(S)-I_{1}(S)=0\right. \tag{2}\\
& -2 S I_{1}(S)+(4+2 S) I_{2}(S)=-4
\end{align*}
$$

$$
\begin{aligned}
\Delta & =(1+2 s)(4+2 s)-4 s^{2} \\
& =4+8 s+2 s+4 s^{2}-4 s^{2}=4+10 s
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1+25 & -25 \\
-25 & 4+25
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
10+45 \\
5 \\
-4
\end{array}\right]
$$

$$
I_{2}=\frac{\left[\begin{array}{cc}
1+25 & \frac{10+45}{5} \\
-25 & -4
\end{array}\right]}{\Delta}=\frac{(1+25)(-4)+\frac{28(10+45)}{8}}{\Delta}=\frac{-4-88+20+85}{\Delta}=\frac{16}{\Delta}
$$

Page 228

$$
\begin{aligned}
I_{2} & =\frac{16}{\Delta}=\frac{16}{4+10 S}=\frac{16}{10\left(S+\frac{4}{10}\right)} \\
& =\frac{1.6}{S+0.4} \\
& =1.6 e^{-0.4 t} \\
V_{0}(t) & =4 \times i_{2}(t) \\
& =4 \times 1.6 e^{-(0.4) t} \\
V_{0}(t) & =6.4 e^{-0.4 t}
\end{aligned}
$$

4] In the che shown in fig switch is initially closed. After steady state, the switch its opened. Determine the nodal $V_{g} s V_{a}(t)$ and $V_{b}(t)$ erring Laplace transform meth

At $t=0^{\circ}$.

$$
\begin{aligned}
& i\left(0^{\circ}\right)=\frac{5}{1}=5 V=v_{c}\left(0^{+}\right) \\
& v_{c}\left(0^{-}\right)=5 V
\end{aligned}
$$

$$
\begin{align*}
& \frac{V_{\nless}}{8} \frac{V_{a}-\frac{5}{s}}{\frac{1}{5}}+\frac{V_{a}-V_{b}+5}{S}=0 \\
& s\left(v_{a}-\frac{5}{s}\right)+\frac{1}{s}\left(v_{a}-v_{b}\right)+\frac{5}{s}=0 \text {. } \tag{1}\\
& \left(S+\frac{1}{S}\right) V_{a}-\frac{1}{S} V_{b}=5-\frac{5}{S} \\
& \frac{V_{b}}{1}+\frac{V_{b}-V_{a}-5}{S}=0 \text {. } \tag{2}\\
& -\frac{1}{5} V_{a}+\left(1+\frac{1}{5}\right) v_{b}=\frac{5}{5}
\end{align*}
$$

$$
\begin{aligned}
& \Delta=\left(s+\frac{1}{s}\right)\left(1+\frac{1}{s}\right)-\frac{1}{s^{2}} \\
& =\frac{\left(s^{2}+1\right)}{s}\left(\frac{s+1}{s}\right)-\frac{1}{s^{2}} \\
& =\frac{s^{3}+s+s^{2}+1}{s^{2}}-\frac{1}{s^{2}} \\
& =s+\frac{1}{s}+1+\frac{1}{s^{2}}-\frac{1 / 2}{s^{2}}=\frac{s^{2}+s+1}{s} \\
& \text { Page } 230
\end{aligned}
$$

$$
\begin{aligned}
& V_{a}(s)=\underbrace{\left[\begin{array}{cc}
5-\frac{5}{3} & -\frac{1}{8} \\
\frac{5}{s} & 1+\frac{1}{s}
\end{array}\right]}_{\Delta}=\frac{5-\frac{5}{5}+\frac{5 /}{5}-\frac{5}{8} /+\frac{5}{8^{2}}}{\Delta} \\
& =\frac{5}{\frac{s^{2}+s+1}{s}}=\frac{5 s}{s^{s}+s+1} \\
& =\frac{5 s}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& s^{2}+\frac{1}{4}+s+1-\frac{1}{4} \\
& =5 \frac{s+\frac{1}{2}-\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& =5 \frac{\left.\left(s+\frac{1}{2}\right)-\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}\right]}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& =5 e^{-\frac{1}{2} t} \cos \frac{\sqrt{3}}{2} t-e^{\frac{1}{2} t} \cdot \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t \\
& =50\left[e^{-\frac{1}{2}} \cos \frac{\sqrt{3}}{2} t-\frac{1}{\sqrt{3}} \sin \right. \\
& V_{a}(t)=5 e^{-\frac{1}{2} t}\left[\cos \frac{\sqrt{3}}{2} t-\frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t\right] .
\end{aligned}
$$

Page 231

$$
\begin{aligned}
& V_{b}(s)=\left[\begin{array}{cc}
s+\frac{1}{s} & 5-\frac{5}{s} \\
\frac{-\frac{1}{s}}{} & \frac{5}{8} \\
\Delta
\end{array}\right]=\frac{5+\frac{5}{s^{2}}+\frac{1}{s}\left(5-\frac{5}{s}\right)}{A} \\
& =\frac{5+\frac{5}{s^{2}}+\frac{5}{s}-\frac{5}{\delta^{2}}}{\Delta}=\frac{\frac{5 s+5}{s}}{\Delta} \\
& =\frac{5(s+1)}{\left(s+\frac{1}{2}\right)^{2}} \\
& =5\left\{\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2} \sqrt{3} \times \frac{1}{\sqrt{3}}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\} . \\
& =5\left[e^{-\frac{1}{2} t} \cos \frac{\sqrt{3} t}{2}+\frac{1}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \frac{\sqrt{3}}{2} t\right] \\
& V_{b}(s)=5 e^{-\frac{1}{2} t}\left[\cos \frac{\sqrt{3}}{2} t+\frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t\right]
\end{aligned}
$$

unit step function

$$
\begin{aligned}
& u(t)= 1 \text { for } t \geqslant 0 \\
& 0 \text { for } t<0 .
\end{aligned}
$$

$$
\begin{gathered}
\alpha[u(t)]=\int_{e^{-}}^{t} 1 e^{-s t} \cdot d t=\left[-\frac{1}{s} e^{-s t}\right]_{0}^{\infty}=\frac{1}{S} \\
\alpha[u(t)]=\frac{1}{s}
\end{gathered}
$$

$$
\begin{aligned}
u(t-a)= & 1 \quad \text { for } t \geqslant a \\
& 0 \text { for } t<a
\end{aligned}
$$

b)

$$
\begin{array}{rr}
u(t+a)=1 & \text { for } t \geqslant-a \\
0 & \text { for } t<-a
\end{array}
$$

c)

$$
u(-(t-a))=u(a-t)=\begin{array}{ll}
1 & \text { for } t \leqslant 0 \\
0 & \text { for } t x
\end{array}
$$

Unit ramp functions:

$$
\begin{aligned}
& \gamma(t)=t \\
& \text { for } t \geqslant 0 \\
& 0 \text { for } t<0 \text {. } \\
& \mathscr{L}[r(t)]=\alpha[t]=\frac{1}{s^{2}} \\
& \text { if slope is } A t=A[A Z]=\frac{A}{s^{2}} \text {. }
\end{aligned}
$$

Shifted versions of rams

$$
\begin{aligned}
\gamma(t) & =A(t-a) \\
& =A(t-a) U(t-a)
\end{aligned}
$$

5)

$$
\begin{aligned}
\gamma(t) & =-A(t-a) \\
& =-A(t-a) u(t-a)
\end{aligned}
$$

Gate function:
The gate fun helps to determine tho Laplace transform of discrete periodic functions.

Gate fur has bright t and a period of S.

it starts at $t=t_{0} \&$ ends at $t=t_{0}+?$ $3 \rightarrow$ period of gate fin.

$$
\begin{aligned}
g_{t_{0}}(t) & =u\left(t-t_{0}\right)-u\left[t-\left(t_{0}+5\right)\right] \\
G_{t_{0}}(s) & =e^{-t_{0} s} \frac{1}{s}-e^{-\left(t_{0}+5\right)^{s} \cdot \frac{1}{s}} \\
& =\frac{e^{-t_{0} s}}{s}\left[1-e^{-5 s}\right] \\
t_{0}=0 ; \quad G_{0}(s) & =\frac{1}{s}\left(1-e^{-5 s}\right)
\end{aligned}
$$

Find Laplace transform of following signal

$$
\begin{aligned}
f_{0}(t) & =v u(t)-2 v u(t-5)+v u(t-2 s) \\
& =\frac{v}{S}-2 v e^{-5 s} \frac{1}{S} 0+v e^{-255} \frac{1}{S} \\
& =\frac{v}{S}\left(1-2-e^{-5 S}+e^{-25 S}\right) \\
E(S) & =\frac{v}{S}\left[\left(1-e^{-5 s}\right)^{2}\right]
\end{aligned}
$$

2)

$$
f(t)=t-\text { slope } \frac{V}{J}
$$

$$
\begin{aligned}
& -(t)=\frac{V}{J} t-\frac{V}{S}(t-s)-v u(t-s) \\
& =\frac{v}{J} t u(t)-\frac{v}{J}(t-s) u(t-s)-v u(t-s) \text {. } \\
& F(s)=\frac{v}{J} \frac{1}{s^{2}}-\frac{v}{J} e^{-s s} \frac{1}{s^{2}}-v e^{-s s} \frac{1}{s}
\end{aligned}
$$

For the ω / t shown in fig write Laplace transform.

$$
\begin{aligned}
\gamma(t)-\gamma\left(t-\frac{3}{2}\right) & -\gamma\left(t-\frac{5}{2}\right) \\
& +\gamma(t-5)
\end{aligned}
$$

$$
\begin{aligned}
& =\gamma(t)-2 \gamma\left(t-\frac{3}{2}\right)+\gamma(t-\zeta) \\
& =\text { slope } t-\text { slope. } 2\left(t-\frac{5}{2}\right)+\text { slope }(t-5) \\
& =\frac{1}{2} t-2 \frac{1}{\frac{3}{2}}\left(t-\frac{5}{2}\right)+\frac{1}{3 / 2}(t-5) \\
& =\frac{2}{5} t-\frac{4}{3}\left(t-\frac{5}{2}\right)+\frac{2}{3}(t-5) \\
& =\frac{2}{5} t u(t)-\frac{4}{3}\left(t-\frac{3}{2}\right) u\left(t-\frac{3}{2}\right)+\frac{2}{3}(t-5) u(t-5)
\end{aligned}
$$

$$
\begin{aligned}
f(t) & =u(t-1)+u(t-2)+u(t-3)+u(t-4)-4 u(t-5) \\
F(s) & =e^{-\$ s} \frac{1}{\delta}+e^{-2 s} \frac{1}{s}+e^{-3 s} \frac{1}{s}+e^{-4 s} \frac{1}{s}-4 e^{-5 \beta s} \frac{1}{\delta} \\
& =\frac{1}{s}\left[e^{-s}+e^{-2 s}+e^{-3 s}+e^{-4 s}-4 e^{-5 s}\right] .
\end{aligned}
$$

4.) Write the eqn for the waveform and find its Laplace transform.

$$
f(t)=\gamma(t)-\gamma\left(t-t_{0}\right)-\gamma\left(t-\left(-t_{0}\right)+\gamma(t-\bar{j})\right.
$$

$f(t)$) $\left.-t\left(t-t_{0}\right)-\left(t-t^{-t_{0}}\right)^{0}\right)+(t-5)$

$$
\begin{array}{r}
f(t)=\frac{E}{t_{0}} t-\frac{E_{0}}{t_{0}}\left(t-t_{0}\right)-\frac{E_{0}}{t_{0}}\left[t-\left(s-t_{0}\right)\right]+\frac{E_{0}}{t_{0}}(t-s) \\
=\frac{E}{t_{0}} t u(t)-\frac{E_{0}}{t_{0}}\left(t-t_{0}\right) u\left(t-t_{0}\right)-\frac{E_{0}}{t_{0}}\left[t-\left(\zeta-t_{0}\right)\right] u\left(t-\left(s-t_{0}\right)\right] \\
+\frac{E_{0}}{t_{0}}(t-s) u(t-\zeta)
\end{array}
$$

$$
\begin{aligned}
& =\frac{E}{t_{0}} \cdot \frac{1}{s^{2}}-\frac{E_{0}}{t_{0}} e^{-t_{0} s} \frac{1}{s^{2}}-\frac{E_{0}}{t_{0}} e^{-(s-t) s} \frac{1}{s^{2}}+\frac{E_{0}}{t_{0}} e^{-s s} \frac{1}{s^{2}} \\
& =\frac{E_{0}}{t_{0} s^{2}}\left[1-e^{-t_{0} s}-e^{-\left(s-t_{0}\right) s}+e^{-s s}\right]
\end{aligned}
$$

whit the eqn for sinusoidal waveform shown \& find its laplace transform

$$
\begin{aligned}
\omega & =2 \pi f=\frac{2 \pi}{T} \\
f(t) & =I \sin \left(\frac{2 \pi}{T} t\right) u(t)+I \sin \frac{2 \pi}{T}(t-5 / 2) u(t-5 / 2 \\
& =I \frac{\frac{2 \pi}{5}}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}}+I e^{-5 / 2 s} \cdot\left(\frac{\frac{2 \pi}{3}}{s^{2}+\left(\frac{2 \pi}{3}\right)^{2}}\right) \\
F(S) & =I \frac{\frac{2 \pi}{3}}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}}\left[1+e^{-\frac{3}{2} s}\right]
\end{aligned}
$$

6) For the ruciangutar waveform shawn write down the Laplace transform equation.

whenever here is a periodic fun.
(5) Laplaa tranefrm $F(S)=\frac{F_{1}(S)}{1-e^{-25}}$

$$
\begin{align*}
t_{1}(t) & =u(t)-2 u(t-s)+u(t-2 s) \\
F_{1}(s) & =\frac{1}{s}-2 e^{-5 s} \frac{1}{s}+e^{2 s s} \frac{1}{s} \tag{x}\\
& =\frac{1}{s}\left[1-2 e^{-s s}+e^{-2 s s}\right] \\
& =\frac{1}{S}\left(1-e^{-5 s}\right)^{2} \\
F(s) & =\frac{F_{1}(s)}{1-e^{-2 s s}} \\
& =\frac{1\left(1-e^{-5 s}\right)^{2}}{s\left(1-e^{-25 s}\right.}
\end{align*}
$$

1) Waveform synthesis:.
2)

$$
\begin{aligned}
& f(t)=\gamma(t)-\gamma(t-5)-u(t-5) \\
& f(t)=\frac{v}{3} t-\frac{v}{3}(t-5)-v u(t-5) \\
& =\frac{v}{S} t u(t)-\frac{v}{S}(t-S) u(t-S)-v u(t-S) \\
& F(s)=\frac{v}{s} \frac{1}{s^{2}}-\frac{v}{s} e^{-s s} \frac{1}{s^{2}}-v e^{-s s} \frac{1}{s^{1}} \\
& =\frac{v}{s s^{2}}\left[1-e^{-s s}\right]-\frac{V e^{-s s}}{s^{\prime}} \\
& =\frac{V}{J s^{2}}\left[1-e^{-\Im s}-5 s e^{-5 s}\right] \\
& F(s)=\frac{v}{5 s^{2}}\left[1-(1+5 s) e^{-5 s}\right] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}(s)=\frac{v}{\sigma s^{2}}\left[1-(1+5 s) e^{-s s}\right] \\
& F(s)=\frac{F_{1}(s)}{1-e^{-s s}}
\end{aligned}
$$

For the rectangular pule shown in fig write the eqn and find its Laplace transform.

$t_{1}(t)$
0

$$
\begin{aligned}
t_{1}(t) & =10 u(t)-10 u(t-a) \\
F_{1}(s) & =10 \frac{1}{s}-10 e^{-a s} \frac{1}{s} \\
& =\frac{10}{s}\left[1-e^{-a s}\right]
\end{aligned}
$$

$$
F(s)=\frac{F_{1}(s)}{1-e^{-s s}}=\frac{10}{s}\left[\frac{1-e^{-a s}}{1-e^{-s s}}\right]
$$

4)

$$
\begin{aligned}
& f(t)=\frac{1}{\frac{3}{2}} \gamma(t)-\frac{2}{5} \gamma\left(t-\frac{5}{2}\right)-\frac{2}{5} \gamma\left(t-\frac{5}{2}\right) \\
& +\frac{2}{3} \gamma(t-5) \\
& =\frac{2}{5} t-\frac{2}{5}\left(t-\frac{5}{2}\right)-\frac{2}{5}(t-5 / 2)+\frac{2}{5}(t-5) \\
& f(t)=\frac{2}{5} t-\frac{4}{3}\left(t-\frac{5}{2}\right)+\frac{2}{3}(t-3) \\
& =\frac{2}{5} t u(t)-\frac{4}{5}\left(t-\frac{5}{2}\right) u\left(t-\frac{5}{2}\right)+\frac{2}{5}(t-5) u(t \\
& F(s)=\frac{2}{5} \cdot \frac{1}{s^{2}}-\frac{4}{5} e^{-\frac{3}{2} s} \frac{1}{s^{2}}+\frac{2}{5} e^{-s s} \frac{1}{s^{2}} \\
& =\frac{2}{J s^{2}}\left[1+e^{-5 s}-2 e^{-\frac{5}{2} s}\right] \\
& F(s)=\frac{2}{\sigma s^{2}}\left[1=e^{-s / 2 s}\right]^{2} .
\end{aligned}
$$

5 Synthesis the w / f shown in fig and find the Laplace transform of the periodic wavefo xm .

$$
\begin{aligned}
f(s) & =\frac{F_{1}(s)}{1-e^{-5 s}} \\
& =\frac{\frac{2}{25}\left[1-e^{-5 / 2}\right]^{2}}{1-e^{-5 s}}
\end{aligned}
$$

Write the equation for the sinnesodal waverer and find its Laplace transform,
fLt)

$$
\omega=2 \pi f=\frac{2 \pi}{\zeta}
$$

$$
\begin{aligned}
& f(t)=I \sin \omega t+[\sin \omega(t-5 / 2) \\
& f(t)=I \sin \frac{2 \pi}{5} t u(t)+I \sin \frac{2 \pi}{3}(t-5 / 2) u(t-5 / 2) \\
& F(s)=I \frac{\frac{2 \pi}{3}}{s+\left(\frac{2 \pi}{5}\right)^{2}}+I e^{-\frac{3}{2} s} \frac{2 \pi}{5}
\end{aligned}
$$

$$
=\frac{I \frac{2 \pi}{s}}{s^{2}+\left(\frac{2 \pi}{5}\right)^{2}}\left[1+e^{-3 / 2 s}\right]
$$

7). Find the LT for half rectified simewan

$$
\begin{aligned}
F(s) & =\frac{F_{1}(s)}{1-e^{-3 s}}=I \\
& =\frac{\frac{2 \pi}{3}}{s^{2}+\left(\frac{2 \pi}{3}\right)^{2}}\left[\frac{1+e^{-\frac{5}{2} s}}{1-e^{-3 s}}\right]
\end{aligned}
$$

8) For the full rectified waveform, find th LT equation

$$
\begin{aligned}
F(s) & =\frac{F_{1}(s)}{1-e^{-s s}} \\
\sigma & =2 \pi \\
\therefore F_{1}(s) & =\frac{I}{s^{2}+1}\left(1+e^{-\pi s}\right) \\
F(s) & =\frac{1}{\left(s^{2}+1\right)} \frac{\left(1+e^{-\pi s}\right)}{\left(1-e^{-\pi s}\right)} \\
& =\frac{I}{s^{2}+1} \operatorname{costh} \frac{\pi s}{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\frac{E}{t_{0}} \gamma(t)-\frac{E}{t_{0}} \gamma\left(t-t_{0}\right)-\frac{E}{t_{0}} \gamma\left(t-\left(s-t_{0}\right)+\frac{E}{t_{0}} \gamma(t-s)\right. \\
&= \frac{E}{t_{0}} t-\frac{E}{t_{0}}\left(t-t_{0}\right)-\frac{E}{t_{0}}\left[t-\left(s-t_{0}\right)\right)+\frac{E}{t_{0}}(t-s) \\
&= \frac{E}{t_{0}} t u(t)-\frac{E}{t_{0}}\left(t-t_{0}\right) u\left(t-t_{0}\right)-\frac{E}{t_{0}}\left[t-\left(s-t_{0}\right) u\left(t-\left(t_{0}-t_{0}\right)\right]\right. \\
&+\frac{E}{t_{0}}(t-s) u(t-s) \\
&= \frac{E}{t_{0}} \frac{1}{s^{2}}-\frac{E}{t_{0}} e^{-t_{0} s} \frac{1}{s^{2}}-\frac{t}{t_{0}} e^{e}\left(s-t_{0}\right) s \frac{1}{s^{2}}+\frac{E}{t_{0}} e^{-s s} \frac{1}{s^{2}} . \\
&= \frac{E}{t_{0} s^{2}}\left[1-e^{-t_{0} s}-e^{\left.-c s-t_{0}\right) s}+e^{-3 s}\right] \\
&= \frac{E}{t_{0} s^{2}}\left\{1-e^{-t_{0} s}+e^{-s s}\left(1-e^{t s)}\right\}\right.
\end{aligned}
$$

$$
=E_{b_{0}^{2}}^{E_{0}} 1 e^{t_{0}^{s}}
$$

10) For the wit theron. Writs down ste LT MI

$$
\begin{aligned}
& f(t)=E u(t)-\frac{E}{3 / 2} t+\frac{E}{\frac{3}{2}}(t-\zeta) \\
& +E u(t-5) \\
& =E u(t)-\frac{2 E}{3} t+\frac{2 E}{3}(t-5)+E u(t-5) \\
& F(S)=E \cdot \frac{1}{S}-\frac{2 E}{3} \frac{1}{s^{2}}+\frac{2 E}{J} e^{-S S} \frac{1}{s^{2}}+E \cdot e^{-s s} \frac{1}{S} \\
& =\frac{E}{5}\left(1+e^{-5 s}\right)-\frac{2 E}{52^{2}}\left(1-e^{-55}\right) \\
& F(s)=\frac{F_{1}(s)}{1-e^{-5 s}} \\
& =\frac{E\left(\Delta t e^{3}\right.}{S(1-c)}-\frac{2 E}{5 s^{2}} \\
& F(s)=-\frac{2 E}{S s^{2}}+\frac{E}{s} \operatorname{coth}\left(\frac{s s}{2}\right) \text {. }
\end{aligned}
$$

11). The w/t shown in is R en nuseidal in the interval $t=0$ to $t=1$ and is an isosceles triangle from $t=2$ to $t=3$.
For all other $t, v=0$ write the exprusion for $V(t)$, using step, ramp and kine function e and find its laplace transform.

$$
f(t)=k_{1} \sin \omega t+k_{1} \sin \omega(t-\phi) .
$$

$$
\begin{aligned}
& k_{1} \sin \omega t+k_{1} \sin \omega(t-\phi) \\
& \left.\omega=2 \pi f=\frac{2 \pi}{5}=\frac{2 \pi}{2}=\pi \mathrm{rad} \right\rvert\, \mathrm{sec} \\
&
\end{aligned}
$$

$$
=k_{1} \sin \pi t u(t)+k_{1} \sin \pi(t-1) u(t-1)
$$

$$
\begin{aligned}
& =k_{1} s i n \\
& F_{1}(s)=k_{1} \frac{\pi}{s^{2}+\pi^{2}}+k_{1} e^{-s} \frac{\pi}{s^{2}+\pi^{2}} \\
& t_{2}(t)=\frac{k_{2}}{0.5} \gamma(t-2)-\frac{k_{2}}{0.5} \gamma(t-2.5)-\frac{k_{2}}{0.5} \gamma(t-2.5)
\end{aligned}
$$

$$
+\frac{k_{2}}{0.5} \gamma(t-3)
$$

$$
\begin{aligned}
& \quad+\frac{k_{2}}{0.5} \gamma(t-3) \\
& =\frac{k_{2}}{0.5}(t-2) u(t-2)-\frac{2}{0.5} k_{2}(t-25) u(t-2.5) . \\
& \quad+k_{2}(t-3) u(t-3) .
\end{aligned}
$$

$$
\begin{aligned}
& t-2) u(t-2) \frac{k_{2}}{0.5}(t-3) u(t-3) . \\
& H k_{2}(t-2.5) u(t
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{k_{2}}{0.5}(t-3) u(t-3) . \\
& =2 k_{2}(t-2) u(t-2)-4 k_{2}(t-2.5) u(t-2.5)+2 k_{2}(t-3) u(t-3) \\
& =-25
\end{aligned}
$$

$$
\begin{aligned}
& =2 k_{2}(t-2) u(t-2) \\
F_{2}(s) & =2 k_{2} \frac{e^{2 s}}{s^{2}}-4 k_{2} e^{-2 s^{s}} \frac{1}{s^{2}}+2 k_{2} e^{-3 s} \frac{1}{s^{2}}
\end{aligned}
$$

$$
F(S)=F_{1}(S)+F_{2}(S)
$$

12) Find LT of periodic signal $x(t)$

$$
\begin{aligned}
f_{1}(t)=u(t) & -\gamma(t)+\gamma(t-1) \\
f_{1}(t) & =u(t)-t u(t)+(t-1) u(t-1) \\
F_{1}(s) & =\frac{1}{s}-\frac{1}{s^{2}}+e^{-s} \frac{1}{s^{2}} \\
& =\frac{1}{s}-\frac{1}{s^{2}}\left[1+e^{-s}\right]=\frac{s-1+e^{-s}}{s^{2}} \\
& =\frac{s-1+e^{-s}}{s^{2}} \quad \text { here } s=2
\end{aligned}
$$

$$
F(s)=\frac{F_{1}(s)}{1-e^{-s s}}=\frac{s-1+e^{-s}}{s^{2}\left(1-e^{-2 s}\right)}
$$

13) Find $L T$

$$
\begin{aligned}
t_{1}(t) & =\gamma(t)-\gamma(t-a)-u(t-a \\
& =t-(t-a)-u(t-a) \\
& =\frac{1 t}{a} u(t)-\frac{1}{a}(t-a) u(t-a)-u
\end{aligned}
$$

$$
\begin{aligned}
F_{1}(s) & =\frac{11}{a s^{2}}-\frac{1}{a} e^{-a s} \frac{1}{s^{2}}-e^{-a s} \frac{1}{s} \\
F_{1}(s) & =\frac{1}{a s^{2}}\left(1-e^{-a s}\right)-e^{-a s} \frac{1}{s} \\
F(s) & =\frac{F_{1}(s)}{1-e^{-s s}} \\
& =s=a \\
& =\frac{F_{1}(s)}{1-e^{-a s}} \\
F(s) & \left.=\frac{1}{a s^{2}}-e^{a s} \frac{1}{s\left(1-e^{-a s}\right.}\right)
\end{aligned}
$$

14]. Find LT.

$$
\begin{aligned}
& f(t)=u(t)-3 u(t-1)+4 u(t-2)-4 u(t-4)-2 u(t-5) \\
& F(s)=\frac{1}{s}\left[e^{-3 e^{s}} \frac{1}{s}+4 e^{-2 s} \frac{1}{s}-4 e^{-4 s} \frac{1}{s}-2 e^{-5 s} \frac{1}{s}\right] \\
& F(s)=\frac{1}{s}\left[1-3 e^{-s s}+4 e^{-2 s}-4 e^{-4 s}-2 e^{-5 s}\right]
\end{aligned}
$$

NETWORK ANALYSIS (18EC32)

Syllabus:-

Module -5

* Two Port Network Parameters
* Resonance

Introduction.
Electrical n / w consists of passing and active elements,
To energise a passive n / w, the n / w needs to be Connected to an energy source.
Two terminals are provided for the pasenven n / o which may be represented as a bor, and to these terminals the energy source is connected.
If only our pair of terminals available for internal connections, the n / ω is dernad as ore port $\mathrm{m} / \mathrm{s} \mathrm{s}$. If 2 pairs of terminals are available, $\rightarrow 2$ port $1 / \omega$. one of then is called \rightarrow isp port.

- /p port.

The $\mu_{g} \&$ at the 2 ports are interrelated end lease Helot, onerups are Expressed in terns of n/w parameters

Fig. $7.1(a)$

73 Open-circuit Impedance Parameters (z parameters):
The defining equations for these parameters are:

$$
\begin{align*}
& z_{11} I_{1}+z_{12} I_{2}=V_{1} \tag{7.7}\\
& z_{21} I_{1}+z_{22} I_{2}=V_{2} \tag{7.8}
\end{align*}
$$

By putting $I_{1}=0$ or $I_{2}=0$ in the above equations, we get
$z_{11}=\left.\frac{Y_{1}}{I_{1}}\right|_{1_{2}=0}$
$z_{31}=\left.\frac{V_{2}}{I_{1}}\right|_{y_{2}=0}$

$$
\begin{align*}
& z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{1_{2}=0} \tag{7.9}\\
& z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{1_{1}=0} \tag{7.10}
\end{align*}
$$

Z_{11}, Z_{12}, Z_{21} and Z_{22} are called open-circuit impedance parameters, as they are obtained by putting $\mathrm{I}_{1}=0$ or $\mathrm{I}_{2}=0$ i.e. by open-circuiting the two ports alternately.
For reciprocal or bilateral networks, $z_{12}=z_{21}$.
The equivalent network of a two-port network in terms of z parameters is as shown in Fig.7.1(b).

Fig. 7.1(b)
2). Short circuited admittance parameters.

$$
\begin{aligned}
& \text { circuited admittance pependent, } \quad V_{1} V_{2} \rightarrow \text { independent } \\
& I_{1}, I_{2} \text { depend }
\end{aligned}
$$

$$
\begin{gathered}
I_{1}=t_{1}\left(V_{11} V_{2}\right) \\
I_{2}=f_{2}\left(V_{1}, V_{2}\right) \\
I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \\
I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{gathered}
$$ $\mathrm{I}_{1} \mathrm{I}_{2} \rightarrow$ olependent

$Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} \Rightarrow$ ip admittance with of p port shorted
$V_{12}=\left.\frac{I_{1}}{v_{2}}\right|_{V_{1}=0} \Rightarrow \begin{array}{r}\text { Transfer admittance with ip port } \\ \text { Short circuited }\end{array}$
$\left.Y_{21}=\frac{I_{2}}{V_{1}} \right\rvert\, v_{2}=0 \Rightarrow$ Transfer admittance with of port
$Y_{22}=\left.\frac{I_{2}}{v_{2}}\right|_{v_{1}}=0 \Rightarrow$ output admittance with ip port short circuited.

$$
\left.\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \quad \right\rvert\, \begin{aligned}
& I_{1}=y_{11} v_{11}+y_{12 v_{2}} \cdot \tau_{2} \\
& I_{2}=y_{21} v_{1}+y_{22}
\end{aligned}
$$

where

$$
\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]=y_{11} y_{22}-y_{12} y_{21}=\Delta y
$$

Hy borid parameters (h parameters) ip owouns of V . dependent V_{1}, I_{2} independent - I_{1}, V_{2} ifp \vee_{g}, dp cuerent.

$$
p
$$

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

$h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{\phi_{2}=0} \rightarrow$ i|p impedence with olp port sluort cktes $h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{\nabla_{2}=0 \rightarrow \text { i|p impedence with }} \rightarrow \begin{aligned} & \text { Reveree } V g \text { gain with i|p port ope } \\ & h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}}=0 \rightarrow \text { chted. }\end{aligned}$. curent gain with o/p port

- $h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0} \Rightarrow \begin{array}{r}\text { Eorward chorent gain with o/p port } \\ \text { ehort ekted }\end{array}$ $h_{22}=\left.\frac{I_{2}}{v_{22}}\right|_{I_{1}=0 \Rightarrow \text { ofp admitat. }}$ cked.

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
I_{2}
\end{array}\right]
$$

$$
\Delta=h_{11} h_{22}-h_{21} h_{1}
$$

V_{2} Transmission parameters (T).
Gives relation b/co Vg is current at one port to the Vg \&o current at the other port.

$$
V_{1}, I_{1}, V_{2} I_{2}
$$

dependent in depend.

$$
\begin{array}{r}
V_{1}=A V_{2}-B I_{2} \\
I_{1}=C V_{2}-D I_{2} \\
A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0} \\
\downarrow \frac{1}{A}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}}=0 \\
-B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}}=0 .
\end{array}
$$

$\downarrow \frac{1}{A}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}=0} \Rightarrow$ Forward $v g$ gain with op port open circuited.
$-\frac{1}{B}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}}=0 \rightarrow$ Transfer Conduct ance with $0 / p$ port short cited.

$$
\begin{aligned}
& C=\left.\frac{I_{1}}{V_{2}}\right|_{2}=0 \\
& \left.\frac{1}{C}=\frac{V_{2}}{I_{1}} \right\rvert\, I_{2}=0 \\
& \left.-D=\frac{I_{1}}{I_{2}} \right\rvert\, V_{2}=0
\end{aligned}
$$

 port short ckted.

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
-I_{2}
\end{array}\right]=\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]
$$

$$
\Delta T=A D-B C
$$

Relationship b/w 2 and Y paranneters:
perancters $\left\{\begin{array}{l}V_{1}=z_{11} I_{1}+z_{12} I_{2} \\ V_{2}=Z_{21} I_{1}+Z_{22} I_{2}\end{array}\right.$
y
paraneters

$$
\begin{equation*}
I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \tag{2}
\end{equation*}
$$

trom (2) (s(b), exprese v_{1} \& compare with (1) \& (2)

$$
\begin{align*}
& {\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]}
\end{aligned}=\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] . . ~ \begin{aligned}
V_{1}=\left[\begin{array}{ll}
I_{1} & y_{12} \\
I_{2} & y_{22}
\end{array}\right] & =\frac{y_{22} I_{1}-V_{12} I_{2}}{\Delta y} \tag{5}\\
\Delta y & =\frac{V_{22} I_{1}}{\Delta y}-\frac{y_{12} I_{2}}{\Delta y}
\end{align*}
$$

Compare (1) \&s (5)

$$
\begin{align*}
& z_{11}=\frac{Y_{22}}{\Delta y} \quad Z_{12}=-\frac{Y_{12}}{\Delta y} \\
& v_{2}=\frac{\left[\begin{array}{ll}
Y_{11} & I_{1} \\
Y_{21} & I_{2}
\end{array}\right]}{\Delta y}=\frac{Y_{11} I_{2}}{\Delta y}-\frac{Y_{21} I_{1}}{\Delta y} \\
&=\frac{-Y_{21} I_{1}}{\Delta y}+\frac{Y_{11} I_{2}}{\Delta y} \tag{6}
\end{align*}
$$

Comp eqn (2) s. (6).

$$
z_{21}=\frac{-y_{21}}{\Delta y} \quad z_{22}=\frac{y_{11}}{\Delta y}
$$

Relation blw 2 and h parameter.

$$
\begin{equation*}
v_{1}, \dot{I}_{2}, I_{1}, V_{2} \tag{3}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
v_{1}=h_{11} I_{1}+h_{12} v_{2} \\
\hat{I}_{2}=h_{21} I_{1}+h_{22} v_{2}
\end{array}\right.
$$

\&

2
paranters $\{$

$$
\begin{align*}
& v_{1}=z_{11} F_{1}+z_{12} I_{2} \tag{A}\\
& v_{2}=Z_{21} I_{1}+z_{22} I_{2}
\end{align*}
$$

from. (44)

$$
\begin{align*}
h_{22} v_{2} & =I_{2}-h_{21} I_{1} \\
v_{2} & =\frac{I_{2}}{h_{22}}-\frac{h_{21}}{h_{22}} I_{1} . \\
v_{2} & =-\frac{h_{21}}{h_{22}} I_{1}+\frac{1}{h_{22}} I_{2} .
\end{align*}
$$

Compare 2 \& (5).

$$
z_{21}=-\frac{h_{21}}{n_{22}}, \quad z_{22}=\frac{1}{h_{22}}
$$

subst can (5) in (3).

$$
\begin{align*}
V_{1} & =h_{11} I_{1}+h_{12}\left(-\frac{h_{21}}{h_{22}} I_{1}+\frac{1}{h_{22}} I_{2}\right) \\
& =F_{1}\left(h_{11}-\frac{h_{12} h_{21}}{h_{22}}\right)+\frac{h_{12}}{h_{22}} I_{2} \tag{6}
\end{align*}
$$

Compare eqn (6) \& (1)

$$
\begin{aligned}
& z_{11}=h_{11}-\frac{h_{12} h_{21}}{h_{22}}=\frac{h_{11} h_{22}-h_{12} h_{21}}{h_{22}}=\frac{\Delta h}{h_{22}} \\
& z_{12}=\frac{h_{12}}{h_{22}}
\end{aligned}
$$

Relation b/w 2 and I papameters:..
2

$$
\begin{align*}
& v_{1}=Z_{11} I_{1}+z_{12} I_{2} \\
& v_{2}=Z_{21} I_{1}+Z_{22} I_{2} \tag{2}
\end{align*}
$$

T paremeter.

$$
\begin{align*}
& V_{1}=A V_{2}-B I_{2} \tag{3}\\
& I_{1}=C V_{2}-D I_{2}
\end{align*}
$$

from eqn (4.

$$
\begin{align*}
& C V_{2}=I_{1}+D I_{2} \\
& V_{2}=\frac{1}{C} I_{1}+\frac{D}{C} I_{2} \tag{B.}
\end{align*}
$$

Compare (5) \& (s).

$$
z_{21}=\frac{1}{C} \quad z_{22}=\frac{D}{C} .
$$

Sulost (S) in eqn (3).

$$
\begin{align*}
& V_{1}=A\left(\frac{1}{C} I_{1}+\frac{D}{C} I_{2}\right)-B I_{2} . \\
& V_{1}=\frac{A}{C} I_{1}+I_{2}\left(\frac{A D}{C}-B\right) \tag{6}
\end{align*}
$$

Compare (1) \& (6)

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

$$
\begin{aligned}
z_{11}=\frac{A}{C} \quad z_{12} & =\frac{A D}{C}-B \\
& =\frac{A D-B C}{C} \\
& =\frac{\Delta T}{C}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{y_{22}}{\Delta y} & \frac{-y_{12}}{\Delta y} \\
\frac{-y_{21}}{\Delta y} & \frac{y_{11}}{\Delta y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\Delta h}{h_{22}} & \frac{h_{12}}{h_{22}} \\
-\frac{h_{21}}{h_{22}} & \frac{1}{h_{22}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{A}{C} & \frac{\Delta T}{C} \\
\frac{1}{C} & \frac{D}{C}
\end{array}\right]
$$

Summury:

Relation b/w y parametus \& olluer type of parameters.

$$
\text { y parameters } \rightarrow \frac{2}{n} \begin{gathered}
\mathrm{T}
\end{gathered} .
$$

$v_{11} v_{2} \rightarrow$ depend
$2 \quad v_{1}=Z_{11} I_{1}+Z_{12} I_{2}$

$$
\begin{align*}
& V_{11} V_{2} \rightarrow \text { depend } \tag{1}\\
& I_{1} I_{2} \rightarrow \text { indepput }
\end{align*}
$$

par

$$
\begin{align*}
& v_{2}=z_{21} I_{1}+z_{22} I_{2} \tag{2}\\
& I_{1}=y_{11} v_{1}+y_{12} v_{2} \tag{3}\\
& I_{2}=y_{21} 0 v_{1}+y_{22} v_{2}
\end{align*}
$$

$$
\begin{equation*}
y \tag{4}
\end{equation*}
$$

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

$I_{1}, I_{2} \rightarrow$ depend $v_{1}, v_{2} \rightarrow$ indeper

$$
\begin{align*}
I_{1}=\left[\begin{array}{ll}
v_{1} & Z_{12} \\
v_{2} & Z_{22}
\end{array}\right] & =\frac{v_{1} Z_{22}-v_{2} Z_{12}}{\Delta 2} \\
I_{1} & =\frac{Z_{22}}{\Delta 2} v_{1}-\frac{Z_{12} v_{2}}{\Delta 2} \tag{s}
\end{align*}
$$

Comparing (3) \& (5).

$$
\begin{aligned}
& y_{11}=\frac{z_{22}}{\Delta 2}, \quad y_{12}=-\frac{z_{12}}{\Delta 2} \\
& I_{2}=\left[\begin{array}{cc}
z_{11} & v_{1} \\
z_{21} & v_{2}
\end{array}\right]=\frac{z_{11} V_{2}-z_{21} V_{1}}{\Delta 2} \\
& \Delta 2 I_{2} \\
&=\frac{z_{11}}{\Delta 2} v_{2}-\frac{z_{21}}{\Delta 2} v_{1} \\
&=\frac{-z_{21}}{\Delta 2} v_{1}+\frac{z_{11}}{\Delta 2} v_{2} \\
& y_{21}=-\frac{z_{41}}{\Delta 2}, \quad y_{22}=\frac{z_{11}}{\Delta 2}
\end{aligned}
$$

y and h parameter.

$$
y_{p}\left\{\begin{array}{l}
I_{1}=y_{11} V_{1}+y_{12} V_{2} \tag{1}\\
I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{array}\right.
$$

h
par

$$
\begin{align*}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \tag{3}\\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{align*}
$$

from (3)

$$
\begin{align*}
& h_{11} I_{1}=v_{1}-h_{12} v_{2} \\
& I_{1}=\frac{1}{h_{11}} v_{1}-\frac{h_{12} v_{2}}{h_{11}}
\end{align*}
$$

Compare (1) \& (5)

$$
y_{11}=\frac{1}{n_{11}} \quad y_{12}=-\frac{h_{12}}{h_{11}}
$$

subs (5) in (4)

$$
\begin{align*}
I_{2} & =h_{21}\left(\frac{1}{h_{11}} v_{1}-\frac{h_{12}}{h_{11}} v_{2}+h_{22} v_{2}\right. \\
& =\frac{h_{21}}{h_{11}} v_{1}+\left(-\frac{h_{21} h_{12}}{h_{11}}+h_{22}\right) v_{2} \\
I_{2} & =\frac{h_{21}}{h_{11}} v_{1}+\left(h_{22}+\frac{h_{21} h_{12}}{h_{11}}\right) v_{2}
\end{align*}
$$

Compar (2) \& (6).

$$
\begin{array}{ll}
y_{21}=\frac{h_{21}}{h_{11}} & y_{22}=\left(\frac{h_{11} h_{22}-h_{21} h_{12}}{h_{11}}\right) v_{2} \\
y_{21}=\frac{h_{21}}{h_{11}} & y_{22}=\frac{\Delta h}{h_{11}}
\end{array}
$$

Y interms of T paraneters

$$
\text { par }\left\{\begin{array}{l}
I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \tag{1}\\
I_{2}=Y_{21} V_{1}+Y_{22} v_{2}
\end{array}\right.
$$

$$
T \text { paraniters }\left\{\begin{array}{l}
V_{1}=A V_{2}-B I_{2} \\
I_{1}=C V_{2}-D I_{2}
\end{array}\right.
$$

\qquad
Rewrite eqn (3).

$$
\begin{align*}
B I_{2} & =A V_{2}-V_{1} \\
I_{2} & =\frac{A}{B} V_{2}-\frac{1}{B} V_{1} \\
I_{2} & =-\frac{1}{B} V_{1}+\frac{A}{B} V_{2} \tag{5}\\
Y_{21} & =-\frac{1}{B} \quad Y_{22}=\frac{A}{B}
\end{align*}
$$

subs (8) in (4).

$$
\begin{aligned}
I_{1} & =C V_{2}-D\left(-\frac{1}{B} V_{1}+\frac{A}{B} V_{2}\right) \\
& =\left(C-\frac{A D}{B}\right) V_{2}+\frac{D}{B} V_{1} \\
& =\left(\frac{B C-A D}{B}\right) V_{2}+\frac{D}{B} V_{1} \\
& =-\left(\frac{A D-B C}{B}\right) V_{2}+\frac{D}{B} V_{1} \\
I_{1} & =\frac{D}{B} V_{1}-\left(\frac{\Delta T}{B}\right) V_{2} \\
\therefore Y_{11} & =\frac{D}{B} \quad Y_{12}=-\frac{\Delta T}{B}
\end{aligned}
$$

Relabion b/w h paramebers \& oller dil parameters

\[

\]

rewriting eqn (1)

$$
\begin{aligned}
Z_{22} I_{2} & =V_{2}-z_{21} I_{1} \\
I_{2} & =\frac{1}{z_{22}} V_{2}-\frac{z_{21}}{z_{12}} I_{1} \\
I_{2} & =-\frac{z_{21}}{z_{22}} I_{1}+\frac{1}{z_{22}} V_{2}
\end{aligned}
$$

comp (10) \& (5)

$$
h_{21}=\frac{-\frac{z_{21}}{z_{22}} \quad h_{22}=\frac{1}{z_{22}} . \quad . \quad . \quad . \quad .}{}
$$

sub eqn (5) in (1).

$$
\begin{align*}
v_{1} & =z_{11} I_{1}+z_{12}\left(-\frac{z_{21}}{z_{22}} I_{1}+\frac{1}{z_{22}} v_{2}\right) \\
& =\left(\frac{\left.z_{11}-\frac{z_{212}}{z_{22}}\right) I_{1}+\frac{z_{12}}{z_{22}} v_{2}}{V_{1}}=\left(\frac{z_{11} z_{22}-z_{21} z_{12}}{z_{22}} I_{1}+\frac{z_{12}}{z_{22}} v_{2}\right.\right. \\
v_{1} & =\left(\frac{\Delta z}{z_{22}}\right) I_{1}+\frac{z_{12}}{z_{22}} v_{2} \tag{6}\\
h_{11} & =\frac{\Delta z}{z_{22}} \quad h_{12}=\frac{z_{12}}{z_{22}}
\end{align*}
$$

Page 264

Relotion b/w

$$
\begin{align*}
& h \rightarrow y .
\end{align*}\left\{\begin{array}{l}
h \rightarrow I_{11} v_{1}+y_{12} v_{2} \\
I_{2}=y_{21} v_{1}+y_{22} v_{2} . \tag{1}
\end{array}\right\} .
$$

Dewriting eqn (i)

$$
\begin{align*}
Y_{11} V_{1} & =I_{1}-Y_{12} V_{2} \\
V_{1} & =\frac{1}{Y_{11}} I_{1}-\frac{Y_{12}}{Y_{11}} V_{2} . \tag{s}
\end{align*}
$$

compare (3) \& (s)

$$
n_{11}=\frac{1}{y_{11}} \quad h_{12}=-\frac{y_{12}}{y_{11}}
$$

Subst. (5) in (2).

$$
\begin{align*}
& I_{2}=Y_{21}\left(\frac{1}{Y_{11}} I_{1}-\frac{Y_{12}}{Y_{11}} V_{2}\right)+Y_{22} V_{2} \\
& I_{2}=\frac{Y_{21}}{Y_{11}} I_{1}+\left(Y_{22}-\frac{Y_{21} Y_{12}}{Y_{11}}\right) V_{2} .
\end{align*}
$$

Compare (4) \& (6).

$$
h_{21}=\frac{y_{21}}{y_{11}} \quad h_{22}=\frac{\Delta y}{y_{11}}
$$

h and T.

$$
h \quad\left\{\begin{array}{l}
v_{1}=h_{11} I_{1}+h_{12} v_{2} \tag{1}\\
I_{2}=h_{21} I_{1}+h_{22} v_{2}
\end{array}\right.
$$

$T\left\{\begin{array}{l}V_{1}=A V_{2}-B I_{2} \\ I_{1}=C V_{2}-D I_{2}\end{array}\right.$
Reworituing eqn (3)

$$
\begin{aligned}
& I_{2}=V_{1}-A V_{2} \\
& I_{2}=\frac{1}{B} V_{1}-\frac{A}{B} V_{2}
\end{aligned}
$$

Newrit eqn (4)

$$
\begin{align*}
D I_{2} & =C V_{2}-I_{1} \\
I_{2} & =\frac{C}{D} V_{2}-\frac{1}{D} I_{1} . \\
I_{2} & =-\frac{1}{D} I_{1}+\frac{C}{D} V_{2} \tag{s.}
\end{align*}
$$

Compare (2) so 5

$$
n_{21}=-\frac{1}{D} \quad h_{22}=\frac{C}{D}
$$

Sub eqn (5) in (3)

$$
\begin{align*}
& V_{1}=A V_{2}-B\left(-\frac{1}{D} I_{1}+\frac{C}{D} V_{2}\right) \\
& V_{1}=\left(A-\frac{B C}{D}\right) V_{2}+\frac{B}{D} I_{1} \\
& V_{1}=\frac{B}{D} I_{1}+\left(\frac{A D-B C}{D}\right) V_{2} \\
& V_{1}=\frac{B}{D} I_{1}+\frac{\Delta T}{D} V_{2}
\end{align*} \quad\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=A D \cdot B C
$$

(1). 8 (6):

$$
h_{11}=\frac{B}{D} \quad h_{12}=\frac{\Delta T}{D}
$$

Series Connection of two ports:
cascade connection of two port networks. (show that resultant ABCD matrix of cascade) Connection is the product of individual $A B C D$ matrix).
The transmission parameters A, B, C and D are useful, in describing two-port $n / w s$ which all Connected in Cascade.

Fig shows 2 port n/ws connected in cascade. In the cascade connection the op port of the first network becomes the i/p port of the second n/io.

Here $I_{1}^{\prime}=-I_{2}$.
Let $A_{1}, B_{1}, C_{1}, D_{1}$ be the transmits on parameter e of $n / \omega \quad N_{1}$
wi A_{2}, B_{2}, C_{2} and D_{2} be the trans mission parameter e of the n/w N_{2}
W.K.T ABCD parameters are given cos

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2} \\
& I_{1}=C V_{2}-D I_{2}
\end{aligned}
$$

Expressing. this in matrix form for N_{L}.
"dy

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]} \tag{1}\\
& {\left[\begin{array}{l}
V_{1}^{\prime} \\
I_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
V_{2}^{\prime} \\
-I_{2}^{\prime}
\end{array}\right]} \\
& \text { sine } V_{1}^{\prime}=V_{2} \tag{2}\\
& \&
\end{align*} I_{1}^{\prime}=-I_{2} .\left[\begin{array}{cc}
V_{2}^{\prime} \\
-I_{2}^{\prime} \tag{3}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { put (3) in } \\
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
V_{2}^{\prime} \\
-I_{2}^{\prime}
\end{array}\right] .} \\
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B_{1} \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{2}^{\prime} \\
I_{2}^{\prime}
\end{array}\right]}
\end{aligned}
$$

put (3) in (1).

The eqn shows that the resultant $A B C D$ matrix of individual Cascade connection is the product of in ideal

Two ports are so This Connection is also This can be Convinienlly studied by $A B C D$ parameters.

Series Connection of 2 ports:
Two two port networks N_{a} and N_{b} are said to be Connected in series if corresponding ports core connected in series

$$
V=I 2 .
$$

In this Connection, the IP \& $\mid P$ currents at The Corresponding ports are forced to be the lame The overall port Vas are equal to the sum of the woresponaling port bogs of the individual 2 ports

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
V_{1 a} \\
V_{2 a}
\end{array}\right]+\left[\begin{array}{l}
V_{1 b} \\
V_{2 b}
\end{array}\right]
$$

$$
\begin{aligned}
v_{1} & =v_{1 a}+v_{1 b} \\
v_{2} & =v_{2 a}+v_{2 b} \\
& =\left[\begin{array}{c}
v_{1 a} \\
v_{2 a}
\end{array}\right]+\left[\begin{array}{l}
v_{1 b} \\
v_{2 b}
\end{array}\right] .
\end{aligned}
$$

But

$$
\left.\begin{array}{rl}
& =\left[\begin{array}{ll}
Z_{11 a} & Z_{12 a} \\
Z_{21 a} & Z_{22 a}
\end{array}\right]_{I_{2 a}}=I_{2 b}=I_{1 a} \\
I_{2 a}
\end{array}\right]+\left[\begin{array}{cc}
Z_{11 b} & Z_{12 b} \\
Z_{21 b} & Z_{22 b}
\end{array}\right]\left[\begin{array}{l}
I_{1 b} \\
I_{2 b}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
I_{1 a}=I_{1 b}=I_{1} \\
V_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
2_{11 a}+z_{11 b} & z_{12 a}+z_{12 b} \\
z_{21}+z_{21 b} & z_{22 a}+z_{22} b
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

parallel Connect on of 2 ports:
Two 2 port n/cos are said to be Connected in parallel, it the corresponding ports ane Connected in parallel as swoon in fig.

In this Connection the ip \& of p vas of the The overdue port currents are equal to the sum of the Corresponding port currents at the individual 2 ports.

$$
\begin{aligned}
{\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] } & =\left[\begin{array}{l}
I_{1 a} \\
I_{2 a}
\end{array}\right]+\left[\begin{array}{l}
I_{1} \\
I_{2 b}
\end{array}\right] \\
& =\left[\begin{array}{ll}
Y_{11 a} & Y_{12 a} \\
Y_{21 a} & Y_{22 a}
\end{array}\right]\left[\begin{array}{l}
V_{1 a} \\
V_{2 a}
\end{array}\right]+\left[\begin{array}{ll}
Y_{11} b & Y_{12} b \\
Y_{21} b & y_{22} b
\end{array}\right]\left[\begin{array}{l}
V_{a_{1} b} \\
V_{2 b}
\end{array}\right.
\end{aligned}
$$

But

$$
\begin{aligned}
& v_{1 a}=v_{1 b}=v_{1} \quad \& \\
& v_{2 a}=v_{2 b}=v_{2} \\
& {\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} a+y_{11} b & y_{12 a}+y_{12} b \\
y_{21 a}+y_{21} b & y_{22 a}+y_{2 b}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]}
\end{aligned}
$$

T section rep of 2 port n / ω

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2}
\end{aligned}
$$

$z_{a}, z_{b} \& z_{c}$ are the 3 imprdences Connected as a T C n/o. The impudence parameters for the n/w are given by.

$$
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}=z_{a}+z_{c}
$$

$$
\left.z_{21}=\frac{V_{2}}{I_{1}} \right\rvert\, I_{2}=0=z_{c}
$$

$$
z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}=z_{c}
$$

$$
\begin{aligned}
& 2_{a} I_{1}+z_{c}\left(1+I_{2}\right)=v_{1} \\
& 2 a I_{1}+2 c I_{1}=v_{1} \\
& 2 a I_{1}+z_{1} I_{1}=v_{1} \\
& \left(z_{a}+v_{c}-I_{2} z_{c} \cdot v_{1}\right. \\
& v \\
& v_{2}=z_{b} I_{2}+z_{c}\left(I_{1}+I_{2}\right) \\
& =\quad v_{1}=i_{2} z_{c} \\
& v_{2}=I_{2} z_{c}+r_{2} z_{b}
\end{aligned}
$$

$$
z_{22}=\left.\frac{v_{2}}{12}\right|_{I_{1}=0}=2 b+z c
$$

$[T]$ Tin terns of $A=\frac{z_{11}}{z_{21}} 2$

$$
B=\frac{\Delta 2}{z_{21}}
$$

$$
\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right)
$$

$$
C=\frac{1}{z_{21}} \quad D=\frac{z_{22}}{z_{21}}
$$

$$
A=\frac{z_{11}}{z_{21}}=\frac{z_{a}+z_{c}}{z_{c}}=1+\frac{z_{a}}{z_{c}}=1+z_{a} Y_{c}
$$

$$
B=\frac{\Delta 2}{z_{21}}=\frac{z_{11} z_{22}-z_{12} z_{21}}{z_{21}}=\frac{\left(2 a+z_{c}\right)\left(z_{b}+z_{c}\right)-z_{c}^{2}}{z_{c}}
$$

$$
=z_{a}+z_{b}+\frac{z_{a} z_{b}}{20}
$$

$$
2 a 2_{b}+2 c 2_{b}+2 a z_{c}+2 z_{c}^{2}-2 z_{c}^{2}
$$

$$
=z_{a}+z_{b}+z_{a} z_{b} y c
$$

$$
\begin{aligned}
& C=\frac{1}{z_{12}}=\frac{1}{z_{c}}=y_{c} \\
& D=\frac{z_{22}}{z_{21}}=\frac{z_{b}+z_{c}}{z_{c}}=1+\frac{z_{b}}{z c}=1+z_{b} y_{c}
\end{aligned}
$$

- Con versely

$$
\begin{aligned}
& A=1+z_{a} y_{c} \Rightarrow A-1=z_{a} Y_{c}=z_{a} C \\
& \therefore z_{a}=\frac{A-1}{G} \\
& D=1+z_{b} Y_{c} . D-1 \\
&=Z_{b} y_{c}=z_{b} C . \\
& \therefore z_{b}=\frac{D-1}{C} .
\end{aligned}
$$

\& $\quad z_{c}=\frac{1}{y_{c}}=C$
θ
To show thot $A D-B C=1$

$$
\begin{aligned}
A D-B C= & \left(1+z_{a} Y_{c}\right)\left(1+z_{b} y_{c}\right)-\left(z_{a}+z_{b}+z_{a} z_{b} y_{c}\right) \\
= & 1+z_{a} Y_{c}+z_{b} Y_{c}-z_{a} Y_{c}+z_{b} Y_{c}-z_{a} z_{b} y_{c}^{2} \\
& +z_{a} z_{b} y_{c}^{z^{2}} z_{a} z_{b} Y_{c}^{2}
\end{aligned}
$$

Reciprocal \& symmetrical n/ws:.
Reciprocal n/w:.
4 Any 2 port n / w in whices, the ratio of respond to the excitation remains Constant, when the positions of excitation \& response are interchanged such n / w is called a reciprocal new is cal such n / w is called a

$$
\begin{aligned}
& z_{12}=z_{21} \\
& y_{12} \\
& y / 21
\end{aligned}
$$

Symmetrical wWw:.
A 2 port n / ω is said to be symmetrical if n/w charactoretio are nor changed whenever the 2 pots are interchanged The condition of for symmetry in tire of

2 parameters

$$
z_{11}=z_{22}
$$

in tums of y parameters

$$
y_{11}=y_{22}
$$

en:

if impedence measured at one port is equal to the impedence measured at the other port with the remaining port open ckted.

1. Find tho 2 paramebere ffor He ctet \& D

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& v_{2}=z_{21} I_{1}+z_{22} I_{2} \\
& Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}}=0 \text {. } \\
& v_{1}=12 I_{1}+6\left(I_{1}+I_{2}\right)^{0} . \\
& V_{1}=18 I_{1} \Rightarrow \frac{V_{1}}{I_{1}}=18 \Omega \\
& Z_{11}=18 \Omega \\
& Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}}=0 \text {. } \\
& v_{1}=12 F_{1}+6\left(F_{1}+I_{2}\right) \\
& V_{1}=46 I_{2} \Rightarrow \quad \frac{V_{1}}{I_{2}}=6 \Omega . \\
& z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}}=0 \text {. } \\
& N_{2}=6\left(I_{1}+I_{2}\right) \Rightarrow \frac{V_{2}}{I_{1}}=6 \Omega 2 \\
& Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \\
& v_{2}=3 I_{2}+6\left(I_{1}+I_{2}\right) \\
& V_{2}=9 I_{2} \Rightarrow \frac{V_{2}}{I_{2}}=9 \Omega 2 \text {. }
\end{aligned}
$$

2 parameters:

1) The nfwe shown in fig contains controlled current sow Find Z parameters.

$$
\begin{gathered}
v_{1}=Z_{11} f_{1}+z_{12} I_{2} \\
v_{2}=Z_{21} I_{1}+z_{22} I_{2} \\
Z_{11}=\left.\frac{v_{1}}{I_{1}}\right|_{I_{2}=0} \quad \& \quad Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}
\end{gathered}
$$

$$
\begin{array}{lr}
V_{1}=1\left(I_{1}-I_{3}\right) & \& \quad I_{3}-6 I_{1}+I_{3}-I_{1}=0 . \\
V_{1}=I_{1}-\frac{7}{5} I_{1} & I_{3}=7 I_{1} \\
V_{1}=-\frac{2}{5} I_{1} \\
\frac{V_{1}}{I_{2}}=-\frac{2}{5}=-0.4 \Omega \\
\frac{V_{1}}{I_{2}}=-0.4 \Omega
\end{array}
$$

6

$$
Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \quad \& \quad Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}
$$

$$
\begin{aligned}
V_{2} & =2 I_{2}^{\prime} \quad \& \quad I_{2}^{\prime}=\frac{I_{2} \times 3}{5}=\frac{3}{5} I_{2} \\
& =2 \frac{3}{5} I_{2} \\
V_{2} & =\frac{6}{5} I_{2} \\
\frac{V_{2}}{I_{2}} & =\frac{6}{5}=1.2 \\
\frac{V_{2}}{I_{2}} & =1.2 \Omega
\end{aligned}
$$

$$
\begin{aligned}
V_{1} & =1 I_{2}^{\prime \prime} \\
V_{1} & =\frac{2}{5} I_{2} \\
\frac{V_{1}}{I_{2}} & =\frac{2}{5} \\
\frac{V_{1}}{I_{2}} & =0.4 V_{2}^{\prime \prime}=\frac{I_{2} \times 2}{5}=\frac{2}{5} I_{2}
\end{aligned}
$$

Find z parameters for the now shown which Contains a controlled vg source.

$$
\begin{aligned}
v_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
v_{2}=Z_{21} I_{1}+Z_{22} I_{2} \\
Z_{11}=\frac{v_{1}}{I_{1}}\left|I_{2}=0 \quad Z_{21}=\frac{v_{2}}{I_{1}}\right| I_{2}=0
\end{aligned}
$$

$\left(r^{100 p}\right.$

$$
\begin{align*}
V_{1}=\left(I_{1}-I_{3}\right)+I_{3}+3 V_{1}=0 \tag{1}\\
V_{1}=I_{1}-I_{3} \\
-I_{1}+I_{3}+I_{3}+3 V_{1}=0 \Rightarrow-I_{1}+2 I_{3}+3 V_{1}=0 \\
2 I_{3}=-3 V_{1}+I_{1} \\
I_{3}=-\frac{3}{2} V_{1}+\frac{1}{2} I_{1}
\end{align*}
$$

(2) leet

$$
\begin{aligned}
& V_{1}=I_{1}-\left(-\frac{3}{2} V_{1}+\frac{1}{2} I_{1}\right) \\
& V_{1}=I_{1}+\frac{3}{2} V_{1}-\frac{1}{2} I_{1} \\
& V_{1}-\frac{3}{2} V_{1}=\frac{1}{2} I_{1} \\
&-\frac{1}{2} V_{1}=\frac{y}{2} I_{1} \\
& \frac{V_{1}}{I_{1}}=-1 \Omega
\end{aligned}
$$

$3^{\text {rd }}$ loop.
32

$$
\begin{aligned}
& 1.5 I_{4}-3 V_{1}=0 \\
& 1.5 I_{4}=3 V_{1} . \\
& I_{4}= \frac{3}{1.5} V_{1}=\frac{3}{\frac{3}{2}} V_{1}=2 V_{1} \\
& I_{4}=2 V_{1} \\
& V_{2}= 0.5 I_{4} \\
& V_{2}= 0.5\left(2 V_{1}\right) \quad \& \quad V_{1}=-I_{1} . \\
& V_{2}= V_{1} . \\
& V_{2}= I_{1} \\
& \frac{V_{2}}{I_{1}}=-1 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0 \quad \& \quad Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \text {. } 0 \text {. } 0 \text {. } 102}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=I_{4} \text {. } \\
& 2 I_{4}-3 V_{1}=0 \Rightarrow 2 I_{4}-3 I_{4}=0 \Rightarrow I_{4}=0 \\
& \therefore I_{4}=V_{1}=0 \text {. } \\
& I_{3}+3 V_{1}+0.5\left(I_{3}-I_{2}\right)=0 \text {. } \\
& I_{3}+3 V / 7+0.5 I_{3}-0.5 I_{2}=0 \text {. } \\
& 1.5 I_{3}=0.5 I_{2} \Rightarrow I_{3}=\frac{0.5}{1.5 \mathrm{~d}} I_{2} \\
& I_{3}=\frac{\frac{1}{3 / 2}}{3 / 2} I_{2} \\
& I_{3}=\frac{1}{3} I_{2} \\
& Z_{2}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}=\frac{I_{4}}{I_{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
V_{2} & =0.5\left(I_{2}-I_{3}\right) \\
V_{2} & =0.5\left[I_{2}-\frac{1}{3} I_{2}\right] \\
V_{2} & =\frac{1}{2}\left[\frac{2}{3} I_{2}\right] \\
\frac{V_{2}}{I_{2}} & =\frac{1}{3} \Omega
\end{aligned}
$$

k them solve:
Determine the Z parameters of eke shown.

$$
\begin{aligned}
& \text { (8) }=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2} \\
& Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}}=0 \quad Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=2 I_{1}+I_{1}^{\prime} \quad \& I_{1}^{\prime}=\frac{I_{1} \times H}{5}=\frac{4_{1} I_{1}}{5} \\
& V_{1}=2 I_{1}+\frac{4}{5} I_{1} \\
& V_{1}=\frac{14}{5} I_{1} \\
& \frac{V_{1}}{I_{1}}=\frac{14}{5} \Omega \\
& \frac{V_{1}}{I_{1}}=2.8 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=2 I_{1}^{\prime \prime} \\
& V_{2}=2 \frac{1}{5} I_{1}=\frac{2}{5} I_{1}^{\prime \prime}
\end{aligned} \quad I_{1}^{\prime \prime}=\frac{I_{1} \times 1}{5}=\frac{1}{5} I_{1}
$$

$$
\frac{V_{2}}{I_{1}}=\frac{2}{5} \sqrt{2}
$$

$$
Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}
$$

$$
Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}
$$

30

$$
\begin{aligned}
& V_{1}=I_{2}^{\prime} \\
& V_{1}=\frac{2}{5} I_{2} \\
& \frac{V_{1}}{I_{2}}=\frac{2}{5} \Omega
\end{aligned} \quad I_{2}^{\prime}=\frac{I_{2} \times 2}{5}=\frac{2}{5} I_{2}
$$

$$
\begin{aligned}
& V_{2}=2 I_{2}^{\prime \prime} \\
& V_{2}=2 \frac{3}{5} I_{2} \\
& V_{2}=\frac{6}{5} I_{2} \\
& \frac{V_{2}}{I_{2}}=\frac{6}{5} \Omega \quad I_{2}^{\prime \prime}=\frac{I_{2} \times 3}{5}=\frac{3 I_{2}}{5}
\end{aligned}
$$

Find Z parameters for the n/w shown

$$
\begin{gathered}
V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
V_{2}=z_{21} I_{1}+z_{22} I_{2} \\
Z_{11}=\frac{V_{1}}{I_{1}}\left|I_{2}=0 \quad \quad Z_{21}=\frac{V_{2}}{I_{1}}\right| I_{2}=0 .
\end{gathered}
$$

$$
I_{x}=I_{1}-\frac{I_{x}}{2} \Rightarrow
$$

$$
\begin{aligned}
I_{x}+\frac{I_{x}}{2} & =I_{1} \\
\frac{3 I_{x}}{2} & =I_{1} \\
I_{x} & =\frac{2}{3} I_{1} .
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=(8+5) I x \\
& V_{1}=13 I_{x} \\
& V_{1}=13\left(\frac{2}{3}\right) I_{1} \\
& \frac{V_{1}}{I_{1}}=\frac{26}{3} \Omega
\end{aligned}
$$

\&

$$
\begin{aligned}
& V_{2}=5 I_{x} . \\
& V_{2}=5\left(\frac{2}{3}\right) I_{1} \\
& V_{2}=\frac{10}{3} I_{1} \\
& \frac{V_{2}}{I_{1}}=\frac{10}{3} \Omega
\end{aligned}
$$

$$
z_{21}=Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}
$$

$$
z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}
$$

$$
\begin{aligned}
I_{x}=I_{2}-\frac{I_{x}}{2} \Rightarrow I_{x}+\frac{I_{x}}{2} & =I_{2} \\
\frac{3 I_{x}}{2} & =I_{2} \Rightarrow I_{x}=\frac{2}{3} I
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=5 I_{x} \\
& V_{2}=5 \frac{2}{3} I_{2} \\
& V_{2}=\frac{10}{3} I_{2} \\
& \frac{V_{2}}{I_{2}}=\frac{10}{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{2}}{I_{2}}=\frac{10}{3} \\
& V_{2}=\frac{10}{3} I_{2} \\
& \frac{V_{1}-V_{2}}{8}+\frac{I_{x}}{2}=0 \\
& \frac{V_{1}}{8}-\frac{V_{2}}{8}+\frac{I_{x}}{2}=0
\end{aligned}
$$

$$
\begin{gathered}
\frac{V_{1}}{8}-\frac{\frac{10}{3} I_{2}}{8}+\frac{\frac{2}{3} I_{2}}{2}=0 \\
\frac{V_{1}}{8}-\frac{10}{2 H} I_{2}+\frac{2}{6} I_{2}=0 \\
\frac{V_{1}}{8}-\frac{5}{12} I_{2}+\frac{1}{3} I_{2}=0 \\
\frac{V_{1}}{8}=I_{2}\left[\frac{5}{12}-\frac{1}{3}\right] \\
\frac{V_{1}}{8}=I_{2}\left[\frac{5-4}{12}\right] \\
\frac{V_{1}}{8}=\frac{1}{12} I_{2} \\
\frac{V_{1}}{I_{2}}=\frac{8}{12}=\frac{2}{3}
\end{gathered}
$$

ans:-

$$
\begin{aligned}
& z_{11}=\frac{14}{5} \quad z_{12}=\frac{2}{5} \Omega \\
& z_{21}=\frac{2}{5} \sqrt{2} \quad z_{22}=\frac{6}{5} \Omega
\end{aligned}
$$

1 paramebers

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2} \\
& y_{11}=\left.\frac{I_{1}}{v_{1}}\right|_{v_{2}=0} \\
& I_{1}=\frac{V_{1}-V_{3}}{1}
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}=V_{1}-\frac{6}{11} V_{\$} \\
& I_{1}=\frac{5}{11} V_{1} \\
& \frac{I_{1}}{V_{1}}=\frac{5}{11} \\
& \frac{v_{3}-v_{1}}{1}+\frac{v_{3}}{2}+\frac{v_{3}}{3}=0 \\
& \left(v_{0}+\frac{1}{2}+\frac{1}{3}\right) V_{3}=V_{1} \text {. } \\
& \left(\frac{6+3+2}{6}\right) v_{3}=v_{1} \\
& \frac{11}{6} v_{3}=v_{1} \\
& V_{3}=\frac{6}{11} V_{1} \text {. } \\
& v_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{v_{2}=0} \text {. } \\
& I_{2}=\frac{V_{2}-V_{3}}{3} \\
& I_{2}=\frac{V_{2}-V_{3}}{3}= \\
& I_{2}=\frac{0-\frac{6}{11} V_{1}}{3} \\
& B I_{2}=-\frac{\varepsilon^{2}}{11} V_{1} \text {. } \\
& \frac{I_{2}}{V_{1}}=-\frac{2}{11} \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}}=0 \text {. } \\
& Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0} \\
& I_{1}=\frac{V_{1}-V_{3}}{1 \Sigma} \\
& I_{1}=-V_{3} \\
& I_{1}=-V_{3} \\
& I_{1}=-\frac{2}{11} V_{2} \\
& \frac{I_{1}}{V_{2}}=-\frac{2}{11} 2 T \\
& y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{1} V_{1}=0 \text {. } \\
& I_{2}=\frac{V_{2}-V_{3}}{3} \\
& \left(\frac{1}{2}+\frac{1}{3}+1\right) v_{3}=\frac{v_{2}}{3} \\
& \left(\frac{3+2+6}{6_{2}}\right) v_{3}=\frac{v_{2}}{3} \\
& I_{2}=\frac{V_{2}-\frac{2}{11} V_{2}}{3}=\frac{11 v_{2}-\frac{2 V_{2}}{11 \times 3}}{11 \times \frac{9 V_{2}}{33}} \\
& \frac{11}{2} v_{3}=v_{2} . \\
& 3 I_{2}=\frac{9}{1+} V_{2} \\
& v_{3}=\frac{2}{11} v_{2} \\
& 33 I_{2}=9 V_{2} \\
& \frac{I_{2}}{V_{2}}=\frac{9}{33}=\frac{3}{11} \mathrm{v}
\end{aligned}
$$

$$
\begin{array}{ll}
Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} & V_{21}=\frac{I_{2}}{V_{1}} V_{2}=0 \quad V_{2} \\
I_{1}=\frac{V_{1}-V_{3}}{1} & \frac{V_{3}}{2}+\frac{V_{3}-V_{2}}{1}+\frac{V_{3}-V_{1}}{1}=0 \\
I_{1}=V_{1}-\frac{2}{5} V_{1} & \left(\frac{1}{2}+1+1\right) V_{3}-V_{2}-V_{1}=0 \\
I_{1}=\frac{3}{5} V_{1} & \frac{5}{2} V_{3}=V_{1} \\
\frac{I_{1}}{V_{1}}=\frac{3}{5} 2 & V_{3}=\frac{2}{5} V_{1} \\
& \\
V_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V 2}=0 &
\end{array}
$$

$$
\left\lvert\, \begin{aligned}
& -I_{1} \\
& -\left(v_{1} \cdot v_{3}\right)
\end{aligned}\right.
$$

$$
\begin{aligned}
& Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}}=0 \\
& I_{2}=\frac{V_{2}-V_{3}}{1}=0-\frac{2}{5} V_{1} \\
& \frac{I_{2}}{V_{1}}=\frac{-2}{5} v \\
& \left.Y_{12}=\frac{I_{1}}{V_{2}} \right\rvert\, V_{1}=0 \quad \& \\
& I_{1}=\frac{Y_{1} 7-V_{3}}{1} \\
& I_{1}=\frac{-2}{5} V_{2} \\
& \frac{I_{1}}{V_{2}}=\frac{-2}{5} 2 J \\
& Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}}=0, I
\end{aligned}
$$

$$
\left.\& \quad Y_{22}=\frac{I_{2}}{V_{2}} \right\rvert\, V_{1}=0
$$

$$
\left\lvert\, \begin{aligned}
& \frac{v_{3}}{2}+\frac{v_{3}-v_{2}}{1}+\frac{v_{3}-v_{1}}{1}=0 \\
&\left(\frac{1}{2}+1+1\right) v_{3}=v_{2} \\
& \frac{5}{2} v_{3}=v_{2} \\
& v_{3}=\frac{2}{5} v_{2}
\end{aligned}\right.
$$

Page 292

$$
\left.V_{22}=\frac{I_{2}}{V_{2}} \right\rvert\, V_{1}=0
$$

kcl at node (2)

$$
\begin{gathered}
\frac{V_{2}-V_{3}}{1 \Omega}+\frac{V_{2}}{\frac{1}{2} \Omega}-I_{2}=0 \\
V_{2}+2 v_{2}-v_{3}-I_{2}=0 \\
3 v_{2}-\frac{2}{5} v_{2}-I_{2}=0 \\
\frac{13}{5} v_{2}=I_{2} \\
\frac{I_{2}}{v_{2}}=\frac{5}{13} \mathrm{~V}
\end{gathered}
$$

$$
V_{3}=\frac{2}{5} V_{2}
$$

I man notes

Find I parameters

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} v_{2} \\
& I_{2}=Y_{21} V_{1}+y_{22} V_{2} \\
& y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}}=0 \quad y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=2 I_{1} \Rightarrow \frac{I_{1}}{v_{1}}=\frac{1}{2}=0.5 \mathrm{v} \\
& 4 I_{2}+10 v_{1}=0 \Rightarrow 4 I_{2}=-10 \mathrm{v} \Rightarrow \frac{I_{2}}{v_{1}}=-\frac{10}{4} \\
& 4 \\
& Y_{21}=-2.5 \mathrm{v}
\end{aligned}
$$

$$
y_{k_{2}}=\left.\frac{I_{1}}{v_{2}}\right|_{v_{1}}=0 \quad Y_{22}=\left.\frac{I_{2}}{v_{2}}\right|_{v_{1}}=0
$$

$$
H_{1} I_{2}=V_{2} \Rightarrow \frac{I_{2}}{V_{2}}=\frac{1}{4}=0.252
$$

$$
I_{1}=0.2 V_{2} \Rightarrow \frac{I_{1}}{V_{2}}=0.2 \Omega
$$

4) I parameters?

$$
\begin{aligned}
& I_{1}=y_{11} v_{1}+Y_{12} v_{2} \\
& I_{2}=Y_{21} v_{1}+Y_{22} v_{2} .
\end{aligned}
$$

$$
\left.y_{11}=\frac{I_{1}}{v_{1}} \right\rvert\, v_{2}=0
$$

$$
\left.y_{21}=\frac{I_{2}}{V_{1}} \right\rvert\, V_{2}=0
$$

$$
\begin{gathered}
\frac{v_{3}-v_{1}}{1}+\frac{v_{3}}{2}+\frac{v_{3}-v_{3}}{2}=0 \\
\left(1+\frac{1}{2}+\frac{1}{2}\right) \quad v_{3}=v_{1} \\
2 v_{3}=v_{1} \\
v_{3}=\frac{1}{2} v_{1}
\end{gathered}
$$

$$
\begin{aligned}
& I_{2}=\frac{V / 2-V_{3}}{2}=\frac{-\frac{1}{2} V_{1}}{2}=\frac{-1}{4} V_{1} \\
& \frac{I_{2}}{V_{1}}=-\frac{1}{4} 2
\end{aligned}
$$

$$
Y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0} \quad Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}
$$

$$
I_{1}=\frac{V_{1}-V_{3}}{1}=-V_{3} .
$$

$$
\begin{aligned}
& \frac{v_{3}}{1}+\frac{v_{3}}{2}+\frac{v_{3}-v_{2}}{2}=0 \\
&\left(1+\frac{1}{2}+\frac{1}{2}\right) v_{3}=\frac{1}{2} v_{2} \\
& 2 v_{3}=\frac{1}{2} v_{2} \\
& v_{3}=\frac{1}{4} v_{2}
\end{aligned}
$$

Nent page.

$$
\begin{aligned}
& \frac{V_{2}-V_{3}}{2}+\frac{V_{2}}{4}-I_{2}=0 . \\
& \frac{3}{4} V_{2}-\frac{1}{2} V_{3}=I_{2} \\
& \frac{3}{4} V_{2}-\frac{1}{2} \frac{1}{4} V_{2}=I_{2} \\
& \frac{3}{4} V_{2}-\frac{1}{8} V_{2}=I_{2} \\
& \left(\frac{3}{4}-\frac{1}{8}\right) V_{2}=V_{2} \quad V_{2} \quad \begin{array}{l}
\frac{1}{4} V_{2} \\
\quad\left(\frac{6-1}{8}\right) V_{2}=I_{2}
\end{array} \quad \begin{array}{l}
1 \\
\end{array} \quad \begin{array}{l}
\frac{5}{8} v
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}=Y_{[1} V_{1}+Y_{12} V_{2} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

$$
I_{2}=Y_{21} V_{1}+1_{22} \quad Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{1}} V_{V_{2}}=0
$$

$$
\begin{gathered}
-I_{1}+\frac{V_{1}}{1_{1}}+\frac{V_{1}-V_{2}}{2}=0 \\
-I_{1}+\frac{3}{2} V_{1}=0 \\
\frac{V_{2}-V_{1}}{2}+I_{1}= \\
\frac{-V_{1}}{2}+3\left(\frac{3}{2} V_{1}-I_{2}=I_{2}=0\right. \\
\frac{-1}{2} V_{1}+\frac{9}{2} V_{1}-I_{2}=0 \\
\frac{4}{2} V_{1}=I_{2} \\
\frac{I_{2}}{V_{1}}=H U
\end{gathered}
$$

$$
V_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}}=0 \quad Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}}=0
$$

$$
\begin{array}{l|l}
\begin{array}{l}
V_{2} \\
2
\end{array} \frac{V_{2}-V_{1}}{2}+3 I_{1}-I_{2}=0 . \\
V_{2}+3 I_{1}-I_{2}=0 . & I_{1}=\frac{V_{1}^{P}-V_{2}}{2}=\frac{-1}{5} \\
V_{2}+3\left(-\frac{1}{2} V_{2}\right)-I_{2}=0 . \\
V_{2}-\frac{3}{2} V_{2}=I_{2} \\
& -\frac{1}{2} V_{2}=I_{2}
\end{array} \quad \Rightarrow \begin{aligned}
& \frac{I_{2}}{V_{2}}=-\frac{1}{2} 2
\end{aligned}
$$

(Jan 20156 m)
3) Following short circuit currents and voltages are obtained experimentally for a $\&$ two port η / ω.

1. With output short circuited, $I_{1}=5 \mathrm{~mA}, I_{2}=-0.3 \mathrm{~mA}$

$$
\& \quad V_{1}=25 \mathrm{~V}
$$

ii) with i/p short circuized, $I_{1}=-5 \mathrm{~mA}, I_{2}=10 \mathrm{~mA}$,

$$
V_{2}=30 \mathrm{~V}
$$

Determine y parameters

$$
\begin{aligned}
& Y_{11} V_{1}+Y_{12} V_{2}=I_{1} \\
& Y_{21} V_{1}+Y_{22} V_{2}=I_{2} \\
& Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=\frac{5 \times 10^{-3}}{25}=0.2 \times 10^{-3} \\
& Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}}=0=-\frac{0.3 \times 10^{3}}{25}=-0.012 \times 10^{3} 20 \\
& Y_{19}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0}=-0.01667 \times 10^{-3} \\
& Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}}=0
\end{aligned}
$$

4) The z parameters of a two port n / w are $z_{11}=20 \mathrm{I}$, $z_{22}=30 \Omega, \quad z_{12}=z_{21}=10 \Omega$. Find y and $A B C D$.
parameters of the n / w.
y in turns of z.
$A B C D$ in tersone of 2 .

$$
\begin{aligned}
& y_{11}=\frac{z_{22}}{\Delta 2}=\frac{z_{22}}{z_{11} z_{22}-z_{12} z_{21}}=\frac{30}{20 \times 30-10 \times 10}=\frac{30}{500} \mathrm{v} \\
& y_{22}=\frac{z_{11}}{\Delta 2}=\frac{20}{500}=0.042 \mathrm{~J}
\end{aligned}
$$

$$
y_{12}=\frac{-z_{12}}{A_{2}}=\frac{-10}{500} \cdot-0.012=y_{21}
$$

ii)

$$
\begin{aligned}
& A=\frac{z_{11}}{z_{21}}=\frac{20}{10}=2 . \\
& B=-\frac{\Delta 2}{z_{21}}=-\frac{500}{10}=-50 \Omega 2 \\
& C=\frac{1}{z_{11}}=\frac{1}{10}=0.1 \mathrm{~V} . \\
& D=\frac{z_{22}}{z_{21}}=3 .
\end{aligned}
$$

For the network shown in Fig.7.14, find y and z parameters. (Karnataka Iniversity

Fig. 7.14

Solution: The transformed network is as shown in Fig.1.

Fig. 1
Converting the star network into delta and simplifying, the network in Fig. 1 can be written as in Fig.2.

$$
\mathrm{y}_{11}(\mathrm{~s})={\frac{\mathrm{I}_{1}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}}_{\mathrm{v}_{2}(\mathrm{~s})=0}
$$

$$
\begin{aligned}
& y_{22}(s)=\left.\frac{I_{2}(s)}{V_{2}(s)}\right|_{v_{1}(s)=0}=\frac{s^{2}+6 s+8}{2(s+6)}+\frac{2 s}{s+6}=\frac{s^{2}+10 s+8}{2(s+6)} \\
& y_{12}(s)=\left.\frac{I_{1}(s)}{V_{2}(s)}\right|_{V_{1}(s)=0}=\frac{-V_{2}(s) \frac{s^{2}+6 s+8}{2(s+6)}}{V_{2}(s)}=-\frac{s^{2}+6 s+8}{2(s+6)}
\end{aligned}
$$

7.12 Define Z parameters. Determine Z parameters for the network shown in Fig. 7.22. (June/July 2011) (10 marks)
soln:: $\quad \mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}=\mathrm{V}_{1} \quad, \quad \mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}=\mathrm{V}_{2}$

$$
\begin{aligned}
& \therefore Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{1_{2}=0}=0, \quad Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{1_{2}=0} \\
& Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{1_{1}=0}=0, \quad Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{1_{1}=0}
\end{aligned}
$$

Fig. 7.22
Converting the star network of $1 \Omega, 2 \Omega$ and 5Ω into delta and simplifying further, the N.W in fig. 7.22 may be written as in Fig. 1.
When $\mathrm{I}_{2}=0$
$Z_{11}=\frac{V_{1}}{I_{1}}=\frac{\frac{17}{2} \times\left(\frac{51}{32}+17\right)}{\frac{17}{2}+\frac{51}{32}+17}=\frac{10,115}{1,734}=\frac{35}{6} \Omega$

$\mathrm{Z}_{22}=\left.\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}\right|_{\mathrm{L}_{1}=0}=\frac{17 \times\left(\frac{51}{32}+\frac{17}{2}\right)}{17+\frac{51}{32}+\frac{17}{2}}=\frac{19}{3} \Omega$
When $I_{2}=0, \quad I_{17 \Omega}=\frac{I_{1} \times \frac{17}{2}}{\frac{17}{2}+\frac{51}{32}+17}=\frac{\frac{17}{2} I_{1}}{\frac{867}{32}}=\frac{272}{867} I_{1}$

$$
\therefore \quad V_{2}=17 \times I_{17 \Omega}=17 \times \frac{272}{867} I_{1}, \quad \therefore \quad Z_{21}=\frac{V_{2}}{I_{1}}=\frac{17 \times 272}{867}=\frac{16}{3} \Omega=Z_{12}
$$

Fig. 7.32
Find the y parameters for the network shown in Fig. 7.33 (Karnataka University)

Fig. 7.33
3 Find z parameters for the network shown in Fig. 7.34. (Mysore University)

Fig. 7.34
. 4 Find y parameters for the network shown in Fig. 7.35. (Kuvempu University)

Fig. 7.35
$7.2 \mathrm{y}_{11}=0.5 \tau, \mathrm{y}_{12}=\mathrm{y}_{21}=-0.25 \tau, \mathrm{y}_{22}=0.625 \mathrm{v}$
$7.3 z_{11}=z_{21}=-1 \Omega, z_{12}=0 \Omega, z_{22}=\frac{1}{3} \Omega$
$7.4 y_{11}(s)=y_{22}(s)=\frac{s^{2}+3 s+1}{s+2}, y_{12}(s)=y_{21}(s)=-\frac{s^{2}+2 s+1}{s+2}$
h parameters: $\quad V_{1}, I_{2}$ depen

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

D) Find h parameters of the in /w shown

$$
\begin{aligned}
& V_{1} \\
&=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2} \\
& h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}}=0 \quad h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{2}=0
\end{aligned}
$$

E^{\top}

$$
\begin{array}{l|l}
V_{1}=I_{1}+2\left(I_{1}+I_{2}\right) & 4 I_{2}+2 I_{1}=0 . \\
V_{1}=3 I_{1}+2 I_{2} & I_{1}^{\prime}=\frac{I_{1} \times 2}{4}=\frac{I_{1}}{2} \\
V_{1}=3 I_{1}+2\left(-\frac{I_{1}}{2}\right) & I_{1}^{\prime}=I_{1}^{\prime \prime}=\frac{I_{1}}{2} . \\
V_{1}=3 I_{1}-I_{1} & I_{2}=-\frac{I_{1}}{2} . \\
V_{1}=2 I_{1} & \frac{I_{2}}{I_{1}}=-\frac{1}{2} \\
\frac{V_{1}}{I_{1}}=2 \Omega
\end{array}
$$

$$
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} \quad \& \quad h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0}
$$

$$
\begin{aligned}
& I_{2}^{\prime \prime}=\frac{I_{2} \times 4}{4+4}=\frac{4 I_{2}}{8_{2}}=\frac{I_{2}}{2}=I_{2}^{\prime} \\
& V_{2}=4 I_{2}^{\prime} \\
& V_{2}=4_{4}^{2} \frac{I_{2}}{2}=2 I_{2} \\
& \frac{I_{2}}{V_{2}}=\frac{1}{2} v
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=4 I_{2}^{\prime} \\
& V_{1}=2 I_{2}^{\prime \prime} \\
& \frac{V_{1}}{V_{2}}=\frac{2 I_{2}^{\prime \prime}}{4 I_{2}^{\prime}}=\frac{2 \times \frac{I_{2}}{2}}{V_{1}^{2} \times \frac{I_{2}}{2}}=\frac{1}{2} \\
& \frac{V_{1}}{V_{2}}=\frac{1}{2}
\end{aligned}
$$

Find h

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2} \\
& h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{21}}=0
\end{aligned}
$$

V_{1}

$$
\begin{aligned}
& I_{2}=\left(-0.5 V_{1}\right)=0.5 V_{1} \\
& 3 I_{1}+3 I_{2}+4\left(I_{1}+I_{2}\right)=V_{1} \\
& 7 I_{1}+7 I_{2}=V_{1} \\
& 7 I_{1}+7\left(+0.5 V_{1}\right)=V_{1} \\
& 7 I_{1}+3.5 V_{1}=V_{1} \\
& 7 I_{1}=V_{1}+3.5 V_{1}=2.5 V_{1} \\
& I_{1} \frac{V_{1}}{I_{1}}=-\frac{7}{2.5}=-2.8 \sqrt{V_{1}}=-2.85 .
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=0.5 V_{1} \\
& I_{2}=0.5\left(-2.8 I_{1}\right) \\
& \frac{I_{2}}{I_{1}}=-1.4
\end{aligned}
$$

$$
h_{27} \rightarrow h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}}=0
$$

$$
h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}}=0
$$

$$
\begin{aligned}
& V_{1}=3 I_{2}+4 I_{2}^{\prime} \\
& V_{1}=3 I_{2}+4\left(0.5 V_{1}\right) \\
& V_{1}=3 I_{2}+2 V_{1} \\
& -3 I_{2}=V_{1}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}^{\prime}=-\left(-0.5 V_{1}\right)=0.5 V_{1} \\
& I_{2}^{\prime \prime}=I_{2}-I_{2}^{\prime} \\
&=I_{2}-0.5 V_{1} \\
& V_{2}=I_{2}^{\prime \prime} \\
& V_{2}=I_{2}-0.5 V_{1} \\
& V_{2}=I_{2}-0.5\left(-3 I_{2}\right) \\
& V_{2}=I_{2}+1.5 I_{2} \\
& V_{2}=2.5 I 2 . \\
& \frac{I_{2}}{V_{2}}=\frac{1}{2.5}=0 \text { Page 310 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{1}}{V_{2}}=-\frac{3 I_{2}}{2.5 I_{2}}=-\frac{3}{2.5}=\frac{-30^{6}}{25 \mathrm{~s}}=-1.2 \\
& \frac{V_{1}}{V_{2}}=-1.2
\end{aligned}
$$

3) Find h parameters of the n/w shown. dome

4) Find h parameters:

$$
\begin{aligned}
V_{1} & =h_{11} I_{1}+h_{12} V_{2} \\
I_{2} & =h_{21} I_{1}+h_{22} V_{2} \\
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}} & \left.=0 \quad h_{21}=\frac{I_{2}}{I_{1}} \right\rvert\, V_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}^{\prime \prime}=\frac{I_{1} \times 1}{3}=\frac{1}{3} I_{1} \\
& I_{1}^{\prime}=\frac{I_{1} \times 2}{3}=\frac{2}{3} I_{1}
\end{aligned}
$$

$$
\& \quad I_{2}=-I_{1}^{\prime \prime}=-\frac{1}{3} I_{1}
$$

$$
V_{1}=I_{1}+I_{1}
$$

$$
V_{1}=I_{1}+\frac{2}{3} I_{1}
$$

$$
V_{1}=\frac{5}{3} I_{1}
$$

$$
\frac{V_{1}}{I_{1}}=\frac{5}{3} 20 \Omega
$$

$$
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} \quad \& \quad h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0}
$$

$$
\begin{aligned}
& I_{2}^{\prime}=\frac{I_{2} \times 3}{3+2}=\frac{3 I_{2}}{5} \\
& I_{2}^{\prime \prime}=\frac{I_{2} \times 2}{5}=\frac{2}{5} I_{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=2 I_{2}^{\prime} \\
& V_{2}=2 \times \frac{3}{5} I_{2} \\
& V_{2}=\frac{6 I_{2}}{5} \\
& \frac{I_{2}}{V_{2}}=\frac{5}{6} \mathrm{v}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=1 I_{2}^{\prime \prime}=\frac{3}{5} I_{2} \\
& V_{2}=\frac{6}{5} I_{2} \\
& \frac{V_{1}}{V_{2}}=\frac{\frac{3}{5} I_{2}}{\frac{6}{5} I 2}=1 / 2 \\
& \frac{V_{1}}{V_{2}}=\frac{1}{2}
\end{aligned}
$$

4] Determine in parameters after writing transform. Nu o

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2} \\
& h_{11}=\frac{V_{1}}{I_{1}}\left|V_{2}=0 \quad h_{21}=\frac{I_{2}}{I_{1}}\right| V_{2}
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}^{\prime \prime}=-I_{2} . \\
& I_{1}{ }^{\prime}=\frac{I_{1} \times \frac{1}{\delta}}{s+\frac{1}{s}}=\frac{I_{1}}{s^{2}+1}=\frac{I_{1}}{1+s^{2}} \\
& I_{1}^{\prime \prime}=\frac{I_{1} \times S}{S+\frac{1}{S}}=\frac{I_{1} \cdot S \cdot S}{1+S^{2}}=\frac{S^{2} I_{1}}{1+S^{2}} \\
& V_{1}=\frac{1}{\delta} f_{1}+\delta I_{1}^{\prime} \\
& \begin{array}{l}
=\frac{1}{S} I_{1}+S I_{1} \\
=\frac{1}{S} I_{1}+\frac{S I_{1}}{1+S^{2}}=\left[\frac{\left.1+S^{2}+S^{2}\right]}{\left(1+S^{2}\right) S} I_{1}\right.
\end{array} \\
& \frac{V_{1}}{I_{1}}=\frac{1+2 s^{2}}{s\left(1+s^{2}\right)} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}^{\prime \prime}=-I_{2} \\
& \frac{s^{2} I_{1}}{1+s^{2}}=-I_{2} \\
& \frac{I_{2}}{I_{1}}=-\left(\frac{s^{2}}{1+s^{2}}\right) \\
& h_{12}=\left.\frac{V_{1}}{v_{2}}\right|_{I_{1}=0} \quad \& \quad h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0 \text {. }} \\
& v_{1} \xi^{\frac{1}{E_{S}} I_{2}} \\
& V_{2}=\left(s+\frac{1}{s}\right) I_{2}=\left(\frac{t+s^{2}}{s}\right) I_{2} \\
& \frac{I_{2}}{V_{2}}=\frac{S}{1+S^{2}} v \\
& V_{1}=s I_{2} . \\
& V_{2}=\left(\frac{1+s^{2}}{s}\right) I_{2} \\
& \frac{V_{1}}{V_{2}}=\frac{s I_{2}}{\left(\frac{1+s^{2}}{s}\right) I_{2}}=\frac{s^{2}}{1+s^{2}} . \\
& \frac{V_{1}}{V_{2}}=\frac{s^{2}}{1+s^{2}}
\end{aligned}
$$

1. Determine the transmission parameters for the now shown in fig

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2} \\
& I_{1}=C V_{2}-D I_{2}
\end{aligned}
$$

$$
A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0} \quad C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}
$$

$$
v_{2}=-5 I_{1} \times 5 \Rightarrow \frac{25 I_{1}}{3 v_{2}}=\frac{I_{1}}{v_{2}}=-\frac{1}{25}
$$

$$
\begin{aligned}
& v_{1}=2 v_{1}+3 v_{2} \\
& v_{1}=2\left(-\frac{1}{25} v_{2}\right)+3 v_{2} \\
& v_{1}=-\frac{2}{25} v_{2}+3 v_{2} \\
& v_{1}=\frac{73}{25} v_{2} \\
& \frac{v_{1}}{v_{2}}=\frac{73}{25}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{I_{2}=5 I_{1} \Rightarrow \frac{I_{1}}{I_{2}}=\frac{1}{5} \Rightarrow \frac{I_{1}}{-I_{2}}=\frac{-1}{5}}{V_{1}} \\
& V_{1}=2 I_{1} \Rightarrow V_{1}=2\left(\frac{1}{5}\right) I_{2}^{2}=\frac{2}{5} \Rightarrow \frac{V_{1}}{I_{2}}=\frac{2}{5} \\
& \frac{V_{1}}{-I_{2}}=\frac{-2}{5}
\end{aligned}
$$

2) Find $A B C D$ parameters:

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2} \\
& I_{1}=C V_{2}-D I_{2}
\end{aligned}
$$

$$
c=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}}=0
$$

$$
\begin{aligned}
& V_{1}=6 I_{1} \\
& V_{2}=5 I_{1} \\
& \frac{V_{1}}{V_{2}}=\frac{6}{5}
\end{aligned}
$$

$$
\left.-D=\frac{I_{1}}{I_{2}} \right\rvert\, V_{2}=0
$$

$$
\begin{aligned}
& I_{1}^{\prime \prime}=-I_{2} \\
& I_{1}^{\prime}=\frac{I_{1} \times 2}{7}=\frac{2 I_{1}}{7} \\
& I_{1}^{\prime \prime}=\frac{I_{1} \times 5}{7}=\frac{5 I_{1}}{7}
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=5 I_{1} \\
& \frac{I_{1}}{V_{2}}=\frac{1}{3} 2
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}^{\prime \prime}=-I_{2} \\
& \frac{5 I_{1}}{7}=-I_{2} \\
& \frac{I_{1}}{I_{2}}=\frac{-7}{5} \text {. } \\
& -D=-\frac{7}{5} \\
& D=\frac{7}{5} \\
& V_{1}=I_{1}+5 I_{1}^{\prime} \\
& V_{1}=I_{1}+5\left(\frac{2 I_{1}}{7}\right)=\frac{8}{8} \frac{17 I_{1}}{7} \\
& V_{1}=\frac{17-I_{1}}{7} \\
& V_{1}=\frac{7}{7}\left(-\frac{7}{5}\right) I_{2} \\
& V_{1}=\frac{17}{5} I_{2} \\
& -B=\frac{V_{1}}{I_{2}}=-\frac{9}{5} \Omega \\
& B=\frac{a}{5} \\
& \frac{V_{1}}{I_{2}}=\frac{-17}{5} \\
& -B=\frac{-17}{5} \\
& B=\frac{17}{5}
\end{aligned}
$$

3) Find transmission parameters:

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2} \\
& I_{1}=C V_{2}-D I_{2}
\end{aligned}
$$

$$
A=\left.\frac{v_{1}}{v_{2}}\right|_{I_{2}=0}
$$

$$
C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}
$$

$$
\begin{aligned}
& I_{1}^{\prime}= \frac{V_{2}}{10} \quad \& I_{1}^{\prime \prime}=I_{1}-\frac{V_{2}}{10} \\
& 5 I_{1}-0.3 V_{1}+4 I_{1}^{\prime \prime}=V_{1} \\
& 5 I_{1}+4\left(I_{1}-\frac{V_{2}}{10}\right)=V_{1}+0.3 V_{1} \\
& 5 I_{1}+4 I_{1}-\frac{2}{5} V_{2}=1.3 V_{1} \\
& 9 I_{1}-\frac{2}{5} V_{2}=1.3 V_{1} \\
& 9\left(\frac{7 V_{2}}{20}\right)-\frac{2}{5} V_{2}=1.3 V_{1} \\
& \frac{63 V_{2}}{20}-\frac{2}{5} V_{2}=1.3 V_{1} \\
&\left(\frac{63-8}{20}\right) V_{2}=1.3 V_{1} \\
& \frac{55}{20} V_{2}=1.3 V_{1}
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=4 I_{1}^{\prime \prime} \\
& V_{2}=4\left(I_{1}-\frac{V_{2}}{10}\right) \\
& V_{2}=4 I_{1}-\frac{2}{5} V_{2} \\
& V_{2}+\frac{2}{5} V_{2}=4 I_{1} \\
& \frac{V_{2}}{5}=4 I_{1} \\
& \frac{V_{2}}{I_{1}}=\frac{20}{7} \\
& \frac{I_{1}}{V_{2}}=\frac{7}{20}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{55}{20} v_{2}=1.3 v_{1} \\
& \frac{V_{1}}{v_{2}}=\frac{55}{20 \times 1.3}=\frac{55}{26} \\
& \frac{v_{1}}{v_{2}}=\frac{55}{26} \\
& -B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} \quad-D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}=-I_{2} . \\
& V_{1}=5 I_{1}-0.3 V_{1} \\
& V_{1}=-5 I_{2}-0.3 V_{1} \\
& -D=\frac{I_{1}}{I_{2}}=-1 \\
& V_{1}+0.3 V_{1}=-5 I_{2} \\
& 1.3 v_{1}=-5 I_{2} \\
& \frac{V_{1}}{I_{2}}=\frac{-5}{1.3} \\
& B=\frac{5}{1.3}=\frac{50}{13} \Omega
\end{aligned}
$$

Find transmission parameters.

$$
v_{1}=A V_{2}-B I_{2}
$$

$$
I_{1}=C V_{2}-D I_{2}
$$

$$
A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}}=0 \quad c=\frac{I_{1}}{V_{2}} I_{2}=0
$$

Weith $I_{2}=0$

$$
\begin{aligned}
& V_{1}=(1+S) I_{1} \\
& V_{2}=S I_{1} \\
& \frac{V_{1}}{V_{2}}=\left(\frac{1+S}{S}\right)
\end{aligned}
$$

$$
V_{2}=S I_{1}
$$

$$
\left.-B=\frac{V_{1}}{I_{2}} \right\rvert\, V_{2}=0
$$

$$
-D=\left.\frac{I_{1}}{I_{2}}\right|_{2}=0
$$

$$
\begin{aligned}
& I_{1}^{\prime \prime}=-I_{2} \\
& I_{1}^{\prime \prime}=\frac{I_{1} \times S}{S+\frac{1}{S}}=\frac{S I_{1} \cdot S}{\left(S^{2}+1\right)}=\frac{S^{2} I_{1}}{\left(1+S^{2}\right)}=I_{2} \\
& I_{1}^{\prime}=\frac{I_{1} \times \frac{1}{S}}{S+\frac{1}{S}}=\left(\frac{I_{1}}{1+S^{2}}\right) . \\
& \frac{I_{1}}{I_{2}}=-\left(\frac{1+s^{2}}{S^{2}}\right) . \\
& D=\frac{1+S^{2}}{S^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=I_{1}+s I_{1}^{1} \\
& V_{1}=I_{1}+\frac{S I_{1}}{\left(1+s^{2}\right)} \\
& V_{1}=\frac{\left(1+s^{2}+s\right) I_{1}}{1+s^{2}} \\
& V_{1}=\left(\frac{1+s+s^{2}}{1+s^{2}}\right)\left(-\left(\frac{1+s^{2}}{s^{2}}\right) I_{2}\right. \\
& \frac{V_{1}}{I_{2}}=\frac{1+s+s^{2}}{s^{2}}
\end{aligned}
$$

5] Determine $A B C D$ parameters:

$$
\begin{aligned}
& V_{1}=A V_{2}-B I_{2} \\
& I_{1}=C V_{2}-D I_{2} \\
& A= \frac{V_{1}}{V_{2}}\left|I_{2}=0 \quad C=\frac{I_{1}}{V_{2}}\right| I_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& -\alpha R_{2} I_{1}+V_{2}-I_{1} R_{3}=0 \\
& I_{1}\left(-\alpha R_{2}-R_{3}\right)=-V_{2} \\
& -I_{1}\left(\alpha R_{2}+R_{3}\right)=-V_{2} \\
& \frac{I_{1}}{V_{2}}=\frac{1}{\alpha R_{2}+R_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=I_{1} R_{1}+I_{1} R_{3}=I_{1}\left(R_{1}+R_{3}\right) \\
& V_{1}=\left(R_{1}+R_{3}\right) I_{1} \\
& V_{2}=\left(\alpha R_{2}+R_{3}\right) I_{1} \\
& \frac{V_{1}}{V_{2}}=\frac{R_{1}+R_{3}}{\alpha R_{2}+R_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& -B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}}=0 \\
& \text { \& }-D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}}=0 \text {. }
\end{aligned}
$$

Resonant circuits
Series \& parallel resonance
frequency responser of series \& parallel circuits Q factor Benreneidth
Resonance is a phenomenon which takes place in ac circuits

- Very imp especially in field of Comm
ex: Radio Rx has the ability to select certain desired freq, transmitted by station. rejects all older unweaned frequencies trans mitten by the over station Such a selection of required freq \& rejection of unwanted freq is based on the principle of resoname.

Resonance is a plunonomen in which applied vg and resulting evrrent are in phase
ore
Ac che is said to be under resonance if it exhibits unity factor condition. $[\cos 0=1]$

The resonance condition con be achieved Either by Keeping the n / w clements Constant \& varying freq or
Keeping freq Constant \& varying freq dependent Element?
A resonant che must hence an inductance \& caparizane the resistance will be always present either due to lack of ideal elenuents or due to tho susistance
when resonance occurs, energy absorbed by on soc x element is exactly equal to the energy and rare $f_{x} \rightarrow$ anclever reactive element; within the system. it rest The total ppparent power is simply the any power is dissipated by Desist, ie llement.
The any pocuce absorbed by the sysbur here also be max at resonance.

2 Two types:

1. Series resonant cirmit 2. parallel resonant che

Series resonant circuit: R,L,C connected in series avos
 alternating v_{y} of varying freq

$$
\begin{aligned}
2 & =\left(R+\hat{\jmath} X_{L}-\hat{\jmath} V_{C}\right) \\
& =R+\hat{\jmath} L L-\hat{\jmath} \frac{1}{\omega C} \\
& =R+\hat{\jmath}\left(\omega L-\frac{1}{\omega C}\right) .
\end{aligned}
$$

at resonance $\quad z=R, \quad \omega \rightarrow \omega_{0}$.

$$
\begin{aligned}
& \text { ance } z=R, \\
& \omega_{0} L-\frac{1}{\omega_{0} c}=0 \Rightarrow \omega_{0} L=\frac{1}{\omega_{0} c} \\
& \omega_{0}^{2}=\frac{1}{L C} \\
& \omega_{0}=\frac{1}{\sqrt{2 C}} \\
& 2 \pi f_{0}=\frac{1}{\sqrt{2 C}} \\
& t_{0}=\frac{1}{2 \pi \sqrt{2 C}}
\end{aligned}
$$

$\mathrm{fr}_{\mathrm{r}} \rightarrow$ resonoul freq.
At resonance, current through eke is maximum.
Δ is given by

$$
\left\{\begin{array}{l}
\gamma=\frac{E}{R}=I_{m}
\end{array}\right.
$$

$$
\left\{\begin{aligned}
\text { For freq }<f r
\end{aligned} \quad \begin{array}{rl}
& x_{C}>x_{L} \quad \&
\end{array}\right.
$$

For freq $>$ fr, $x_{L}>x_{C}$.

Ac-Currene leading $V g$

$$
\begin{aligned}
& I=\frac{V}{R+\hat{\jmath}\left(x_{c}-x_{L}\right)} \\
& x_{L}=\hat{\jmath}-\omega L \\
& x_{c}=\frac{-\hat{\jmath}}{\omega c}
\end{aligned}
$$

for los f "
at resonce, $P_{m}=I m^{2} R$

$$
\text { or } t_{1} \text { or } t_{2} P=\left(\frac{\hat{I}_{m}}{\sqrt{2}}\right)^{2} R=\frac{I_{m}^{2}}{2} R=\frac{P_{m}}{2}
$$

$\therefore f_{1} f_{2} \rightarrow$ hay power frequencil
A resonant che is alcoays adjusted Quo to select the band of frequencies lying $1 / \omega$ fir rat

Selectivity:
It is defined as the ratio of resonant if θ to B.W

$$
\text { 1.c selectivity }=\frac{f_{0}}{f_{2}-f_{1}}
$$

Qsfactor (Quality factor) or (Vgmagnificatien)
During series resonance, the voltages across I resistive elements ie inductance \& capacitumb is many times more than the applied v_{g}.

IRe $Q \rightarrow$ ratio of V_{y} across induction or capacities to the applied Vg .

$$
\begin{align*}
& Q=Q_{S}=\frac{V_{L}}{V_{\theta}} \text { or } Q_{S}=\frac{V_{C}}{V} \tag{0}\\
& Q_{S}=\frac{V_{L}}{V}=\frac{I_{0} X_{L}}{I_{0} R}=\frac{\operatorname{Im} X_{L}}{\operatorname{Im} R}=\frac{X_{L}}{R}=\frac{\omega_{0} R}{R} . \\
& Q_{S}=\frac{\omega_{0} L}{R} \tag{2}
\end{align*}
$$

also $\quad W_{2}=$ Io KE

$$
\begin{align*}
V_{L}=I_{S}=\frac{V_{c}}{V} & =\frac{I_{0} X_{c}}{I_{0} R}=\frac{I_{m} X_{c}}{I_{0} R}=\frac{X_{c}}{R}=\frac{1}{N C R} . \\
Q_{S} & =\frac{1}{H_{0} C R} \tag{3}
\end{align*}
$$

Parallee resonance:
From (2) \& (3)

$$
\frac{w_{O K}}{R}=\frac{1}{\omega_{0} R}
$$

Quality factor can also be defined as capalitancte ratio of inductaive res stanke. reactance to due res.stance.
(2) $s(f) Q_{S}=\frac{\omega_{c} \alpha}{x}=\frac{1}{\omega_{0} c x}$.

$$
\begin{align*}
& Q_{s}=\frac{1}{\omega_{0}^{2} C L} . \\
& Q=\frac{X_{L}}{R} \quad \& \quad Q=\frac{X_{C}}{R} \quad x c=\frac{1}{\omega_{C}} . \\
& Q=\frac{\omega_{C}}{R} \text { (s) } \quad Q=\frac{1}{\omega_{0} C R} \\
& Q
\end{align*}
$$

Substi: (4) in (S)

$$
\begin{aligned}
& Q=\frac{\frac{1}{Q C R} \cdot L}{R} \\
& Q=\frac{L}{Q C R^{2}} \\
& Q^{2}=\frac{L}{R^{2} C} \\
& Q=\frac{1}{R} \sqrt{\frac{L}{C}}
\end{aligned}
$$

a resonant kt is freq select. una The behaviour of reactive components chang wo So ot is necessary to with lariat on freq

1. Variation of reactance with frequency.

$$
\begin{aligned}
& x_{L}=\hat{f} \omega L \\
& +\hat{\imath} \Rightarrow x_{L}=\hat{\uparrow} \\
& x_{c}=\frac{\jmath^{w}}{\omega c} \\
& f \hat{\uparrow} \Rightarrow x_{c} \downarrow .
\end{aligned}
$$

R remains constant for are freq. The inductive reactance x_{L} follows st. line.. x_{c} follows hyperbolic curve.
At $f r, x_{L}=x_{C}$, The variation of 2 shown at $f r, I$ max $\Rightarrow 2 \mathrm{~min}$.
1.etstrfor lower value f, z 个 ane to incurred value $g^{x} c$ for higerer value of $(f>+r) 2 \hat{\imath}$ are to imerecaed valuing x_{r}

variation q $_{2}=$ impotence wi th $^{2}+\hat{d}(x)$

$$
\begin{aligned}
& E_{2}=R+\hat{f}\left(x_{R}-x_{0}\right) \\
& 2+\hat{f}\left(\cos _{L}-\frac{1}{w c}\right)
\end{aligned}
$$

under resonce $2=R$.
current in series resonant $C k t$ is given by

$$
I=\frac{V}{|2|}=\frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega c}\right)^{2}}}
$$

at resonance $I=I_{0}$

$$
I_{0}=\frac{V}{R}
$$

$$
x_{c}=\frac{1}{w c} \quad x_{L}=w L .
$$

recriation of current with freq

Considering phase
$f:>f o(t r) \rightarrow$ inductive effect.
writ parent

Expression for $f_{1} \& f_{2}$:
Relation $b / w, f_{1}, f_{2}, f_{r}$.
expression for fomox, flmax.
smpocession for B.W

Expression for $f_{1} \& f_{2}$ \& B.W-

At f_{1} \& f_{2} current is $\frac{i m}{\sqrt{2}}$ \& hence impedence is $\sqrt{2}$ time the value of impedence Ingeneral, impedence of ckt is given by

$$
z=\sqrt{R^{2}+\left(x_{L}-x_{C}\right)^{2}}
$$

At fr $\Rightarrow z_{r}=R$.

$$
2=\sqrt{2} z_{\gamma}
$$

at $f_{1} \& f_{2}=2=\sqrt{2} R$
stisfor

$$
\begin{align*}
& \sqrt{2} R=\sqrt{R^{2}+\left(x_{L}-x_{C}\right)^{2}}, \\
& 2 R^{2}=R^{2}+\left(x_{L}-x_{C}\right)^{2}, \\
& R^{2}=\left(x_{L}-x_{C}\right)^{2} \tag{1}\\
& \text { or }
\end{align*}
$$

At $f_{1}, x_{c}>x=x_{L}-x_{C}$.
$x_{c}>x_{L}$, eqn(G) can be writien as

$$
R=X_{C}-X_{L}
$$

$$
\begin{aligned}
R & =x_{C}-x_{L} \\
& =\frac{1}{\omega_{1} c}-\omega_{1} L \\
R & =\frac{1-\omega_{1}^{2} L C}{\omega_{1} c}
\end{aligned}
$$

$$
R w, C=1-w_{1}^{2} L C .
$$

$$
\omega_{1}^{2} L C+R \omega_{1} C-1=0
$$

$$
\div \quad L C
$$

$$
w_{1}^{2}+\frac{R}{L} w_{1}-\frac{1}{L C}=0
$$

$$
\begin{aligned}
& x=\frac{-b \pm \frac{x^{2}+b x^{2} c}{a^{2}-4 a 0}}{2 a}
\end{aligned}
$$

$$
\begin{aligned}
\omega_{1} & =\frac{-R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}-4\left(\frac{1}{L C}\right)} \\
& =\frac{-\frac{R}{L} \pm \sqrt{\frac{R^{2}}{L^{2}}+\frac{4}{L C}}}{2} \\
\omega_{1} & =\frac{-\frac{R}{L}+\sqrt{\frac{R^{2}}{L^{2}}+\frac{4}{L C}}}{2}
\end{aligned}
$$

$$
\omega_{\omega_{1}=\frac{-\frac{R}{L}-\sqrt{\frac{R^{3}}{L^{2}}+\frac{4}{R C}}}{2}}^{\frac{\operatorname{discard}}{-v e \operatorname{sign} \rightarrow-v e \omega}}
$$

-ve rign \rightarrow-ve ω

$$
\begin{aligned}
& W_{1}=-\frac{R}{2 L}+\frac{1}{2} \sqrt{\frac{R^{2}}{L^{2}}+\frac{4}{L C}} \\
& W_{1}=-\frac{R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}} \\
& f_{1}=\frac{1}{2 \pi}\left[-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}} \cdot\right]
\end{aligned}
$$

At $12, x_{L}>x_{C}$
at +2 ,

$$
\begin{aligned}
R & =x_{L}-x_{C} \\
& =\omega_{2} L-\frac{1}{\omega_{2} C} \\
R & =\frac{\omega_{2}^{2} L C-1}{\omega_{2} C}
\end{aligned}
$$

$$
\begin{gathered}
\omega_{2} R C=\omega^{2} L C-1 \\
\omega_{2}^{2} L C-\omega_{2} R C-1=0 . \\
\omega_{2}^{2}-\omega_{2} \frac{R}{L}-\frac{1}{L C}=0 \\
\omega_{2}=\frac{\frac{R}{2} \pm \sqrt{\left(\frac{R}{L}\right)^{2}+L\left(\frac{1}{L C}\right)}}{2} \\
\omega_{2}=\frac{R}{L} \pm \sqrt{\frac{R^{2}}{L^{2}+\frac{4}{L C}}} \\
2 \\
\omega_{2}=\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}} \\
f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right]
\end{gathered}
$$

Bandwidth $\because f_{2}-f_{1}$

$$
\begin{aligned}
& =\frac{1}{2 \pi}\left\{\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right\}-\left[\frac{1}{2 \pi}\left(\frac{-R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{2 C}}\right]\right. \\
& =\frac{1}{2 \pi}\left[\frac{R}{2 L}+\frac{R}{2 L}\right] \\
& =\frac{1}{2 \pi} \cdot \frac{2 R}{2 L} \\
f_{2}-f_{1} & =\frac{R}{2 \pi L}
\end{aligned} \quad \begin{array}{ll}
\frac{\alpha L}{R}=\frac{1}{w c R} \\
& =\frac{1}{2 \pi b c^{R}}
\end{array}
$$

at resonance $Q=Q_{S}=\frac{Q_{L}}{R}=\frac{W L}{R}$

$$
\begin{aligned}
&=\frac{2 \pi f_{r} L}{R} \\
&=\frac{2 \pi f_{r} \frac{L}{R}}{Q}= \\
& \frac{f r}{f_{2}-f_{1}} .
\end{aligned} \quad \frac{R}{2 \pi L}=f_{2}-t_{1}
$$

$$
\begin{aligned}
& Q=\frac{f_{r}}{f_{2}-f_{1}} \\
& f_{2}-f_{1}=\frac{f_{r}}{Q} \\
& B \omega=f_{2}-f_{1}=\frac{f_{r}}{Q}=\frac{f_{r}}{Q_{s}} \\
& f_{2}-f_{1}=\frac{R}{2 \pi L} \\
& f_{2}-f_{1}=\frac{t_{r}}{Q_{s}} \\
& \frac{f_{2}-f_{1}}{f_{r}}=\frac{1}{Q_{s}} .
\end{aligned}
$$

choractorsizes resonoll B. We relod ne to its central freq

Sometimes $\frac{f_{2} f_{1}}{f_{r}} \rightarrow$ is referred to as fractional
Relation b/w fr, f_{1} \& f_{2} :
The impedences of an RaCe resonant ckt at 6 \& are given by
$x c>x c$

$$
\begin{aligned}
& 2_{1}=\sqrt{R^{2}+\left(x_{C_{1}}-x_{L_{1}}\right)^{2}} \\
& 2_{2}=\sqrt{R^{2}+\left(x_{L_{2}}-x_{C_{2}}\right)^{2}}
\end{aligned}
$$

But $z_{1}=z_{2}$

$$
\begin{align*}
& z_{1}=z_{2} \\
& R^{2}+\left(x_{C_{1}}-x_{L_{1}}\right)^{2}=R^{2}+\left(x_{L_{2}}-x_{C_{2}}\right)^{2} \\
& x_{C_{1}}-x_{L_{1}}=x_{L_{2}}-x_{C_{2}} \\
& x_{C_{1}}+x_{C_{2}}=x_{L_{1}}+x_{L_{2}} \\
& \frac{1}{w_{1} C}+\frac{1}{w_{2} C}=w_{1} L+w_{2} L \\
& \frac{1}{c}\left[\frac{\omega_{1}+w_{2}}{w_{1} w_{2}}\right]=L\left[w_{1}+w_{2}\right] \tag{1}\\
& \omega_{1} \omega_{2}=\frac{1}{L C}
\end{align*}
$$

but $f_{0}=\frac{1}{2 \pi \sqrt{2 C}}$

$$
\begin{align*}
& \omega_{0}=\frac{1}{\sqrt{L_{C}}} \Rightarrow \omega_{0}^{2}=\frac{1}{h_{c}} \tag{1}\\
& \text { (1) } s \text { (2) }
\end{align*}
$$

$$
\begin{align*}
\omega_{1} \omega_{2} & =\omega_{0}^{2} \tag{2}\\
\omega_{0}^{2} & =\sqrt{\omega_{1} \omega_{2}} \\
\text { co } f_{r} & =\sqrt{t_{1} t_{2}}
\end{align*}
$$

1.e resonant fer g is geometric mean of haft point frequencies.

Variation of voltages across $A S C$ with frequency

Initially at $f=0 \Rightarrow c \rightarrow$ acts as open aet sulcus worent.
\therefore Then across capacitor we have total if Vg 's As freq \uparrow, reactance of $C \downarrow$ \& that. but freq $\hat{\Lambda}$, reactance of $L \hat{1}$ so $\quad x_{C}-x_{L}=\downarrow$. \& current \uparrow. As current \uparrow, v_{g} across $R V_{R} \hat{1}$ \& also both $V_{L} \& V_{C} \uparrow$
hen frequncy $=f r$, impedence $\quad 2=R$,
\therefore current is $m a x \Rightarrow$ so V_{R} reaches mex value.
As freq is st.ll $\hat{\text { Aabove }} \mathrm{fr}$, reactance of $L \hat{\&} \&$ reactance of $C \downarrow$. \& hence $\left(x_{L}-x_{C}\right), \uparrow \Rightarrow$ current \downarrow,
\Rightarrow so $V_{R} w$ \&salso both $v_{0} \& V_{L} \downarrow$ As frequency becomes very high, both $V_{R} \& V_{C}$ value approaches sero while V_{L} alene appraados V_{s}

From the graph, it is clear lenat, v_{g} across c \& v_{g} across L is not mox at $f r$. $v_{g} V_{0}$ is mex at freq fo (foc $<f_{r}$) \& $V_{y} V_{c}$ is mor at foe q $V_{N} . \quad\left(b_{L}>f r\right)$.

Frequencies for maximum $v g$ aross $L S C$ fomex is freq at which Vcmax occurs \&

$$
\begin{aligned}
& \text { mox } \text { is freq at which forwhich } x_{C}>x_{L} \\
& \text { is } f_{c m c}<f^{r} \quad \text { for } \\
& V_{c}=I x_{c} \cdot \\
& V_{c}=\frac{V}{2} \cdot \frac{1}{\omega C} \\
&=\frac{V}{\sqrt{R^{2}+\left(x_{C}-x_{L}\right)^{2}}} \cdot \frac{1}{\omega c}
\end{aligned}
$$

$$
\begin{aligned}
v_{c}^{2} & =\frac{v^{2}}{R^{2}+\left(\frac{1}{v c}-w L\right)^{2}} \times \frac{1}{w^{2} c^{2}} \\
& =\frac{v^{2}}{w^{2} c^{2} R^{2}+w^{2} c^{2}\left(\frac{1}{w^{2} c^{2}}+w^{2} L^{2}-2 \frac{L}{c}\right)} \\
& =\frac{v^{2}}{w^{2} c^{2} R^{2}+\left(1+w^{4} c^{2} L^{2}-2 w^{2} L C\right)} \\
& =\left\{\frac{v^{2}}{w^{2} c^{2} R^{2}+\left(w^{2} L c-1\right)^{2}}\right.
\end{aligned}
$$

V_{c} is mox when $\frac{d v_{c}^{2}}{d w}=0$

$$
\begin{aligned}
& \left.\frac{d v_{c}{ }^{2}}{d \omega}=\frac{\operatorname{tor}^{2} c^{2} R^{2}\left(\operatorname { \omega o } ^ { 2 } \left\{\frac{d \gamma}{-}\left(\frac{d}{d \gamma}(n \gamma)\right]-n r\left[\frac{d}{d r}(d r)\right]\right.\right.}{(d r)^{2}}\right] \\
& =-v^{2}\left\{2 \omega c^{2} R^{2}+04 \omega^{3} c^{2} L^{2}-4 \omega L C\right\}=0 . \\
& 2 \omega C^{2} R^{2}+4 \omega^{3} L^{2} C^{2}-H \omega L C=0 \\
& 2 \omega c\left(c R^{2}+2 \omega^{2} L^{2} c-2 L\right)=0 \text {. } \\
& C R^{2}+2 \omega^{2} L^{2} C-2 L=0 \text {. } \\
& 2 \omega^{2} L^{2} C-2 L+C R^{2}=0 \text {. } \\
& \omega^{2}-\frac{1}{\alpha C}+\frac{R^{2}}{2 L^{2}}=0 \text {. } \\
& \omega^{2}=\frac{1}{L C}-\frac{R^{2}}{2 L^{2}} \text {. } \\
& \omega=\sqrt{\frac{1}{L C}-\frac{R^{2}}{2 L^{2}}} \\
& \therefore \text { famax }=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{2 L^{2}}} \\
& \frac{1 x^{2}}{\frac{x^{2}}{(x+3 x)^{2}}} \\
& n \cdot x^{n-1} \\
& { }_{2}^{2}=0 \\
& \div 2 L^{2} C
\end{aligned}
$$

$$
f_{r} m o x=?
$$

$$
\begin{aligned}
V_{L}=I X_{L} & =\frac{Q V}{\sqrt{R^{2}+\left(X_{L}-x_{C}\right)^{2}}} \omega L \\
& =\frac{V W L}{\sqrt{R^{2}+\left(W L-\frac{1}{w C}\right)^{2}}} \\
V & =V
\end{aligned}
$$

Earquency deviation (S).
R.L. C series ckt

The frequency deviation of an difference b/w is defined as the ratio of resonant frequency operating frequency frequency
to the resonant for

$$
\delta=\frac{\omega-\omega_{r}}{w_{r}}=\frac{t-f_{r}}{f_{r}}
$$

$\omega \rightarrow$ operating freq in radsec
Nr \rightarrow resonant freq in xadlsec.
$t \rightarrow$ operating frequency in H_{2}
$\mathrm{fr} \rightarrow$ resonant fouquency in H 2 .
The impedence of an RLC lories aft is given by

$$
\begin{aligned}
& z=R+\hat{\jmath} \delta x_{L}-\hat{\jmath} x_{c} . \\
& =R+\hat{\jmath} \omega L-\hat{\jmath} \frac{1}{\omega C} \\
& Q=\frac{\omega L}{R} \\
& Q=\frac{1}{\omega C} R . \\
& =R\left[1+\hat{\delta}\left(\frac{\omega L}{R}-\frac{1}{\omega C R}\right)\right] \\
& =R\left[1+\hat{\jmath}\left[\frac{\omega_{\gamma} L}{R} \cdot \frac{\omega}{\omega_{\gamma}}-\frac{1}{\omega_{\gamma} C R} \times \frac{\omega_{\gamma}}{\omega}\right)\right] \\
& =R\left[1+\hat{\delta}\left(Q_{S} \frac{\omega}{\omega_{r}}-Q_{s} \cdot \frac{\omega_{r}}{\omega}\right)\right] \\
& =R\left[1+\hat{f} Q_{s}\left(\frac{\omega}{\omega r}-\frac{\omega_{r}}{\omega}\right)\right] \\
& =R\left[1+\hat{\jmath} Q_{s}\left(1+\delta-\frac{1}{1+\delta}\right)\right] \text {. } \\
& =R\left[1+\hat{\jmath} Q_{G}\left(\frac{x+s^{2}+\delta \delta}{1+\delta}\right)\right] \\
& =R\left[1+\hat{\jmath} Q \delta\left(\frac{2+\delta}{1+\delta}\right)\right] \\
& z=R\left[1+\hat{\jmath} Q \delta\left(\frac{2+\delta}{1+\delta}\right)\right] \text {. }
\end{aligned}
$$

1) A series resonant cat Goubaining resonat ing. 1000 KH with effect, ne value of Q as 100 is having total value of resistance in ct of? The supplied Vg is 10 V . Colculocte the Minn \& phase angle of current \& impedence of the at frequency $10 \mathrm{KH2}$ blow resonant freq

$$
=50 L
$$

$$
=50-100.5 \hat{\jmath}
$$

$$
=112.25\lfloor-63.55 \Omega
$$

$$
I=\frac{v}{2}
$$

$$
=\frac{10}{112.25 \underline{-63.55}}
$$

$$
=0.089163 .55
$$

Magnitude $=0.0891$

$$
\phi=163,55
$$

1.e current leads Vg .
ie below resonance freq is capacitive

$$
\begin{aligned}
& f_{r}=1000 \mathrm{KH} 2 \\
& Q=100 \text {. } \\
& 2=R=50 \Omega \text {. } \\
& V=10 \Omega \text {. } \\
& I=\frac{V}{2} \\
& f=\begin{array}{r}
1000 K \\
=10 K \\
990
\end{array} \\
& Z=R\left[1+\hat{\jmath} Q \delta \frac{2+\delta}{1+\delta}\right] \\
& \delta=\frac{f-f r}{f r} \\
& =50[1+\hat{\jmath}(100)(-0.01) \cdot 2-0.01]=\frac{990 \mathrm{~K}-1000 \mathrm{~K}}{1000 \mathrm{~K}} . \\
& =50 \text { 年 }[1+\hat{\jmath} 2.010]
\end{aligned}
$$

ng is required droit a serves REC circuit
©forate at $1 \mathrm{MH}_{2}$. Detrmine values of $R, \angle \& C$ B.W of ckt is $5 \mathrm{KH2}$ and ite impedence 8
q 5002 at resonance

$$
\begin{aligned}
B \omega & =5 K H 2= \\
Z_{0} & =Q=50 \Omega \\
f_{0} & =1 \mathrm{MHz}=1 \times 10^{6} \mathrm{~Hz}
\end{aligned}
$$

The impredence of eeriQ, RLC cki at resonane is given by

$$
\begin{aligned}
Z_{0} & =R \\
R & =50 \Omega 2 \\
\text { B. } \omega & =f_{2}-f_{1}=\frac{R}{2 \pi L}=5 d \times 2 \\
L & =\frac{R}{2 \pi(B \omega)}=\frac{50}{2 \pi(5000)}= \\
\alpha & =1.5915 \mathrm{mHH} \\
f_{0} & =\frac{1}{2 \pi \sqrt{1 C}} \\
C & =\frac{1}{\left(2 \pi f_{0}\right)^{2} L} \\
& =\frac{1}{\left(2 \pi \times 1 \times 10^{6}\right)^{2}\left(1.5915 \times 10^{-3}\right)} \\
& =15.9159 \mathrm{mlt}
\end{aligned}
$$

Parculee resonance:

Consists of an inductive coil of resistance R \& inductance r place in parallel with C \& Connected to an alternating supply of $\mathrm{Vg} E$.
The impedence of coll is

$$
z_{L}=R+\hat{\jmath} \omega L
$$

Admittance of $\mathrm{CO} \mathrm{l} l$ is

$$
\begin{aligned}
& y_{L}=\frac{1}{z_{L}}=\frac{1}{R+\hat{\jmath} \omega L} \times \frac{R-\hat{\jmath} \omega L}{R-\hat{\jmath} \omega L}=\frac{R-\hat{\jmath} \omega L}{R^{2}+\omega^{2} L^{2}} \\
& 2_{C}=\frac{-\hat{\jmath}}{\omega c}
\end{aligned}
$$

\& $y_{c}=\frac{1}{z_{c}}=\frac{1}{\frac{-\hat{j}}{\omega c}}=\frac{\omega c}{-\hat{f}} \times \frac{\hat{j}}{\hat{f}}=\hat{\jmath_{\omega}}{ }_{c}$
Total admittance of CKL 18

$$
\begin{aligned}
Y & =Y_{L}+Y_{C} \\
& =\frac{R-\hat{\jmath} \omega L}{R^{2}+\omega^{2} L^{2}}+\hat{\jmath} \omega c . \\
& =\frac{R}{R^{2}+\omega^{2} L^{2}}+\hat{\gamma}\left(\omega C-\frac{\omega L}{R^{2}+\omega^{2} L^{2}}\right)
\end{aligned}
$$

Page 344
cht at
impedence of ckt be purely γ_{e}. or admitance must be purelly Coud

$$
\begin{align*}
& \therefore \quad \omega_{\gamma}-\frac{\omega_{r} L}{R^{2}+\omega_{\gamma}^{2} L^{2}}=0 . \\
& \omega_{\gamma} C=\frac{\omega_{\gamma} L}{R^{2}+\omega_{\gamma}^{2} L^{2}} \\
& R^{2}+\omega_{\gamma}^{2} L^{2}=\frac{L}{C} \tag{0}\\
& \omega_{r}^{2}=\frac{\frac{L}{C}-R^{2}}{L^{2}}=\frac{1}{L C}-\frac{R^{2}}{L^{2}} \\
& \omega_{r}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}} \\
& f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}
\end{align*}
$$

At resonance, admiblance f ekt is purlly Condu

$$
\begin{equation*}
y_{\gamma}=\frac{R}{R^{2}+\omega^{2} L^{2}} \tag{2}
\end{equation*}
$$

$\operatorname{rom}(1) \quad R^{2}+\omega^{2} L^{2}=\frac{L}{C}$
sub (1) in (2)

$$
\begin{aligned}
& y_{\gamma}=\frac{R}{\frac{L}{C}}=\frac{R C}{L} \\
& y_{\gamma}=\frac{R C}{L}
\end{aligned}
$$

co $\quad 2_{\gamma}=\frac{L}{R C}$
resintance Page 345

Network Analysis
parcullel resonance
Resonance $\rightarrow v_{g}$ \& I in phase.
Here elements are connected in parallel.

Impedance \rightarrow admiltace $R \rightarrow$ Conductance. reactance \rightarrow susxeptance.
practical practical Resonant kt
Consises of an inductive coil of resist ance $R \&$ an inductenree 2 placed in parallel with Capacitance C Connected to an alternating $V_{q} . V$ of variable freq f.

Impedence of coil is

$$
Z_{L}=R+\hat{\jmath} W L \text {. }
$$

$$
\begin{aligned}
& \text { Admittance of coil is } \\
& Y_{L}=\frac{1}{z_{L}}=\frac{1}{R+\hat{\jmath} \omega L} \times \frac{R-\hat{\jmath} \omega L}{R-\hat{\jmath} \omega L}=\frac{R-\hat{\jmath} \omega L}{R^{2}+\omega^{2} L^{2} .} \\
& 2_{C}=-\frac{\hat{\jmath}}{\omega c} . \\
& Y_{C}=\frac{1}{z_{C}}=\frac{\omega c}{-\hat{\jmath}} \times \frac{\hat{\jmath}}{\hat{\jmath}}=\hat{\delta} \omega c .
\end{aligned}
$$

Total admittance of the colt is

$$
\begin{aligned}
& Y=Y_{L}+Y_{C} . \\
&=\frac{R-\hat{\jmath} \omega L}{R^{2}+\omega^{2} L^{2}}+\hat{\jmath} \omega c . \\
&=\frac{R}{R^{2}+\omega^{2} L^{2}}+\hat{f}(\omega c-\omega L \\
&\left.R^{2}+\omega^{2} L^{2}\right)
\end{aligned}
$$

At resonance, impedence of ext is purely res. es admittance must be pwely Conduct ve.
\therefore imaginary part is zero.
At resonance,

$$
\begin{align*}
& \omega_{r}-\frac{\omega_{r} L}{R^{2}+\omega_{r}^{2} L^{2}}=0 . \\
& \omega_{r} C=\frac{\omega_{r} L}{R^{2}+\omega_{r}^{2} L^{2}} \Rightarrow R^{2}+\omega_{r}^{2} L^{2}=\frac{L}{C} \tag{-1}\\
& \omega_{r}^{2} L^{2}=\frac{\frac{L}{C}-R^{2} .}{\omega_{r}^{2}=\frac{\frac{L}{C}-R^{3}}{L^{2}}=\frac{1}{L C}-\frac{R^{2}}{L^{2}} .} \\
& \omega_{\gamma}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}} \\
& \& \therefore f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}} .
\end{align*}
$$

At resonance, Qelmittance of che is purely Conduct ie

$$
\begin{array}{ll}
Y_{r}=\frac{R}{R^{2}+\omega^{2} L^{2}} \\
Y_{r}=\frac{R^{2}}{\frac{L}{C}} & \because \operatorname{rrom}(1) \\
R^{2}+\omega^{2} L^{2}=\frac{L}{C} .
\end{array}
$$

or $Z_{r}=\frac{L}{R C} \Rightarrow$ dynamic resetance.
cerement at resonance is given by

$$
\begin{aligned}
& \text { at resonance is given } \\
& I_{\gamma}=\frac{E}{2}=\frac{E \times 1}{\frac{L}{R C}}=\frac{R C}{L .}
\end{aligned}
$$

Parallel resonant cut Considering capacitance to have
resistance

Consider a parallel che as shown.

$$
\begin{aligned}
Z_{L} & =R_{L}+\hat{f} \omega L \\
\text { 1.e } Y_{L} & =\frac{1}{R_{L}+\hat{f} \omega L} \times \frac{R_{L} \hat{j} \omega L}{R-\hat{f} \omega L}=\frac{R_{L}-\hat{f} \omega L}{R^{2}+\omega^{2} L^{2}} \\
Z_{C} & =R_{c}-\hat{\delta} \frac{1}{\omega c} . \\
Y_{C} & =\frac{1}{R_{c}-\hat{f} \frac{1}{\omega c}} \times \frac{R_{c}+\hat{\delta} \frac{1}{\omega c}}{R_{c}+\hat{j} \omega C}=\frac{R_{c}+\hat{f} \cdot \frac{1}{\omega c}}{R_{c}^{2}+\frac{1}{\omega^{2} c^{2}}}
\end{aligned}
$$

Total admittance y

$$
\begin{aligned}
Y & =Y_{L}+Y_{C} \\
& =\frac{R_{L}-\hat{f} \omega L}{R^{2}+\omega^{2} L^{2}}+\frac{R_{C}+\hat{\jmath} \frac{1}{\omega c}}{R_{C}^{2}+\frac{1}{\omega^{2} c^{2}} .} \\
& =\left(\frac{R_{L}}{R_{L}^{2}+\omega^{2} L^{2}}+\frac{R_{C}}{R_{C}^{2}+\frac{1}{\omega^{2} c^{2}}}\right)+\hat{\jmath}\left[\frac{1 / \omega c}{R_{C}^{2}+\frac{1}{\omega^{2} C^{2}}}-\frac{\omega L}{R_{L}^{2}+\omega^{2} L^{2}}\right]
\end{aligned}
$$

At resonance,
Admitequce of ct is purely Conduct. ne.
\therefore imaginary part is 0 .

$$
\frac{\frac{1}{\omega_{r} c}}{R_{c}^{2}+\frac{1}{\omega^{2} c^{2}}}=\frac{\omega_{r}^{1} L}{R_{L}^{2}+\omega_{r}^{2} L^{2}}
$$

$$
\begin{aligned}
& \frac{R_{L}^{2}+\omega_{\gamma}^{2} L^{2}}{\omega_{\gamma} c}=\omega_{\gamma} L\left(R_{c}^{2}+\frac{1}{\omega_{\gamma}^{2} c^{2}}\right) . \\
& \frac{1}{L C}\left(R_{L}^{2}+\omega_{r}^{2} L^{2}\right)=\omega_{r}^{2}\left(R_{C}^{2}+\bar{\omega}_{r}^{2} C^{2}\right) \\
& \frac{R_{L}^{2}}{L C}+\frac{\omega_{\gamma}^{2} L}{C}=\omega_{\gamma}^{2} R_{c}^{2}+\frac{1}{C^{2}} \text {. } \\
& \omega_{r}^{2}\left(R_{c}^{2}-\frac{L}{c}\right)=\frac{R_{L}^{2}}{L C}-\frac{1}{c^{2}} \text {. } \\
& =\frac{1}{L C}\left(R_{L}^{2}-\frac{L}{C}\right) \text {. } \\
& \therefore \omega_{1}^{2}=\frac{\frac{1}{L C}\left(R_{L}^{2}-\frac{L}{C}\right)}{R_{c}^{2}-\frac{L}{C} .} \\
& \omega_{r}=\frac{1}{\sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\frac{L}{C}}{R_{c}^{2}-\frac{L}{C}} .} \\
& f_{r}=\frac{1}{2 \pi \sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\frac{L}{C}}{R_{c}^{2}-\frac{L}{C}}}
\end{aligned}
$$

The admittennce at resonave is puely Conduct ir

$$
V_{\gamma}=\frac{R_{L}}{R_{L}^{2}+\omega_{\gamma}^{2} L^{2}}+\frac{R_{c}}{R_{c}^{2}+\frac{1}{\omega^{2} c^{2}}}
$$

Cuerent at resonamce is given by

$$
\begin{aligned}
I_{\gamma} & =E Y_{\gamma}=\frac{E}{2} . \\
& =E\left[\frac{R_{L}}{R^{2}+\omega_{S}^{2} L^{2}}+\frac{R_{c}}{R_{c}^{2}+\frac{1}{\omega^{2} c^{2}}}\right]
\end{aligned}
$$

Qfactor of a parcellel resonant ckt.

vector diagram is lhown
$\underbrace{I_{C}}_{i_{L}} \quad \times \xrightarrow{I_{L} \cos \phi_{L}} L_{L}$.

- Ir lagr V

$$
\begin{aligned}
& \text { Ir lagR } V \\
& I_{C} \text { heads } V \sqrt{R^{2}+(\omega L)^{2}} \\
& 2= \\
& \quad \theta=\tan ^{-1}\left(\frac{\omega L}{R}\right)
\end{aligned}
$$

- fuctor of a parallel resonam

At resonance only reactive evorents flow liorough 2 Hanches. ($I_{L} \sin \phi_{2}$) ehrough R^{-h} branch \& Ic througle capacitance. These curounts will be many times more than the total cuorent at resonance.

The quolity factor of paralel resonant ckt is defined as current magnification.
$Q_{P}=\frac{\text { current htrough capaator at reson ance }}{\text { Told }}$

$$
x_{c}=\frac{-\hat{\gamma}}{\omega c} \Rightarrow y_{c}=\frac{\omega c}{-\hat{\gamma}} \times \frac{\hat{\jmath}}{\hat{\gamma}}=
$$

$$
\text { Rieictan } / \text { Susceptance }
$$ $=\frac{I_{C \gamma}}{I_{\gamma}}$

$$
=\frac{E Y_{c}}{E Y_{2}}=\frac{E Y_{c}}{E Y_{2}}
$$

$$
y_{r}=\frac{R}{R^{2}+w^{z_{L}}{ }^{2}}
$$

$$
=\frac{E \omega_{r} c}{\frac{R C}{L}}=\frac{W_{r c}}{\frac{R c}{L}}
$$

$$
y_{r}=\frac{R}{L / C}
$$

$$
V_{\gamma}=\frac{R c}{2}
$$

$$
\begin{aligned}
& =\frac{\operatorname{wor}^{2} R^{2}}{1 P} \frac{\omega_{r} \&}{1 e_{r} L} \\
& =\frac{R \%}{L}
\end{aligned}
$$

$$
\text { or } 2_{r}=\frac{2}{R C} \text {. }
$$

$$
x_{L}=\frac{\partial w L}{}
$$

$$
=\frac{w_{r} L}{R}
$$

$$
\frac{1}{x_{L}}=\frac{1}{\hat{\jmath} \omega_{L}} \times \frac{\hat{\delta}}{\hat{\gamma}}=\frac{\hat{\partial}}{-\omega_{L}}
$$

$$
=\frac{X_{L}}{R}
$$

$$
=Q_{S} .
$$

$$
\begin{aligned}
\frac{E y_{L}}{E y_{2}} & =\frac{1}{\frac{\omega_{L}}{K L}}= \\
& =
\end{aligned}
$$

\therefore qualiky factor. of hoill \&perallel resonand ckt is same.

I me
To derive $f_{1}, f_{2}, \Rightarrow$ impedance of parallel rel is 0.707 time value of mex impidence ats

$$
\delta=\frac{f-f_{r}}{f_{r}}= \pm \frac{1}{2 Q_{0}}
$$

radome fra tor cion f
B.w parallel eke is given by

$$
\begin{gathered}
B \cdot \omega=f_{2}-f_{1}=\frac{\text { resonant freq }}{\text { Quality factor }}=\frac{f_{r}}{Q p} . \\
f_{2}-f_{1}=\frac{f_{r}}{Q_{p}} \Rightarrow Q_{1}=\frac{f_{r}}{f_{2}+t_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Select.vily }=\frac{\text { Resonant freq }}{B \cdot \omega}=\frac{f_{r}}{t_{2}-f_{1}} \\
& \text { Selectivity }=\frac{f_{r}}{f_{2}-f_{1}}=Q_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { in evils wed } \\
f_{2}-f_{1}=\frac{R}{20}
\end{array} \\
& Q=\frac{x_{u}}{R}=\frac{\omega d}{R}=\frac{2 \pi+\frac{\mu}{x}}{R} \\
& Q=\frac{f-6}{f_{2}-f_{1}} \\
& Q=\frac{f r}{B v^{9}}
\end{aligned}
$$

Salsa,

$$
\begin{aligned}
& I_{L}=Q_{0} I \\
& I_{C}=Q_{0} I
\end{aligned}
$$

Current through 'inductor \& Capacitor core Q times supplied current at entiresonance.

Frequency of parallel resonance can be wis written in another form as follows

$$
\begin{aligned}
f_{r} & =\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R_{L}^{2}}{L^{2}}} \\
& =\frac{1}{2 \pi} \frac{1}{\sqrt{L C}} \sqrt{1-\frac{C R_{L}^{3}}{L}} \\
& = \\
f_{\gamma} & =\frac{1}{2 \pi \sqrt{L C}} \sqrt{1-\frac{1}{Q^{2}}}
\end{aligned}
$$

This eqn indicates ltat freq differs from that of Series kt with the same elements by a factor $\sqrt{1-\frac{1}{Q_{0}{ }^{2}}}$.

$$
\theta^{2}=\frac{L}{C}
$$

$$
\begin{aligned}
& Q=\frac{\left(\frac{1}{Q R C}\right)^{L}}{R} \\
& Q=\frac{2}{Q R^{2} C}
\end{aligned}
$$

For high quolity factor circuits, frequency of series \& parodlel whets are almost Same.

In the cot given below, an inductance n_{0} having a Q of 5 is in parculel wi ? ? Determine the value of capacitance \& 0_{1} at resonant freq of $500 \mathrm{rad} / \mathrm{sec}$.

$$
f r=\frac{1}{2 \pi} \sqrt{\frac{1}{R C}-\frac{R^{2}}{L^{2}}}
$$

or

$$
\begin{aligned}
f r & =\frac{1}{2 \pi \sqrt{h c}} \sqrt{1-\frac{1}{Q_{0}^{2}}} \\
(2 \pi f r \Rightarrow & \frac{1}{\sqrt{h C}} \sqrt{1-\frac{1}{Q_{0}^{2}}} . \\
(2 \pi f r)^{2} & =\frac{1}{L C}\left(1-\frac{1}{Q_{0}^{2}}\right) \\
C & =\frac{1}{\left(2 \pi f_{r}\right)^{2} \times L}\left(1-\frac{1}{Q_{0}^{2}}\right) \\
& =\frac{1}{(500)^{2} \times 0.1}\left(1-\frac{1}{5^{2}}\right) \\
& =38.4 \times 10^{-6} \mathrm{~F} \\
C & =38.4 \mu \mathrm{~F} .
\end{aligned}
$$

$$
\begin{gathered}
Q=\frac{\omega L}{R} \Rightarrow R=\frac{\omega L}{Q} \\
R=\frac{500 \times 0.1}{5} \\
R=10 \Omega
\end{gathered}
$$

- Detumiar the R-N-C parallel eCht parameters what response new values of W_{r} and in fig what are increased 4 times?

From fig.

$$
\begin{aligned}
2_{r}=10 \Omega . \quad \omega_{r} & =10 \mathrm{rad} / \mathrm{scc} . \\
B w & =0.4 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

tens. dat
Som paralle che Th m

$$
\begin{aligned}
& \therefore 2_{\gamma}=\frac{L}{R C}=10 \Omega \text {. } \\
& Q_{p}=\frac{f_{r}}{B \omega}=\frac{\omega_{r}}{B \omega} \\
& Q_{p}=\frac{10}{0,4}=25 \text {. } \\
& \text { 1) } Z_{r}=R\left(1+Q_{0}^{2}\right) \\
& 10=R\left(1+2 s^{2}\right) \text {. } \\
& R=\frac{10}{1425^{2}} \\
& =0.0159702 \text {. } \\
& 2 r=\frac{L}{R C} \text {. } \\
& 10=\frac{L}{R C} \Rightarrow \frac{L}{C}=R(10) \\
& \Rightarrow \frac{L}{c}=(0.01597)(10) \\
& \frac{L}{C}=0.1597 \\
& B . \omega=\frac{f_{r}}{S_{p}} \\
& \text { in der. } \\
& R^{2}+w^{2} L^{2}=\frac{L}{C} \\
& R^{2}\left(1+\frac{w^{2} L^{2}}{R^{2}}=\frac{L}{0}\right. \\
& R^{2}\left(1+Q_{0}{ }^{2}\right)=\frac{L}{C} \\
& R\left(1+Q_{0}^{2}\right)=\frac{L}{C R} \\
& R\left(1+Q_{0}^{2}\right)=2
\end{aligned}
$$

$$
\begin{align*}
& f_{r}=\frac{1}{2 \pi \sqrt{L C}} \sqrt{1-\frac{1}{Q_{0}^{2}}} \\
& \omega_{r}=\frac{1}{\sqrt{L C}} \sqrt{1-\frac{1}{Q_{0}^{2}}} . \\
& \omega_{r}^{2}=\frac{1}{L C}\left(1-\frac{1}{Q_{0}^{2}}\right) . \\
& (10)^{2}=\frac{1}{L C}\left(1-\frac{1}{25^{2}}\right) \\
& \frac{1}{L C}=\frac{10^{2}}{1-\frac{1}{25^{2}}} \\
& \frac{1}{L C}=100.16 \\
& L C=9.984 \times 10^{-3} . \tag{2}
\end{align*}
$$

we have $\frac{\alpha}{c}=0.1597 \Rightarrow c=\frac{\mathrm{L}}{0.1597}$.
si (3) in (2).

$$
\begin{aligned}
& L \frac{L}{0.1597}=9.984 \times 10^{-3} \\
& L=0.039931 \mathrm{t} \\
& L=39.93 \mathrm{mH}
\end{aligned}
$$

$\operatorname{sem}(\sqrt[3]{3})$

$$
\begin{aligned}
& C=\frac{\alpha}{0.1597}=0.25 \mathrm{~F} . \\
& \alpha=39.93 \mathrm{mH} \\
& C=0.25 \mathrm{~F} \\
& R=0.01597 .
\end{aligned}
$$

Now if $c^{\prime}=4 C=4(0.25)=$ IF used in len CRt.

$$
\begin{aligned}
& f_{\text {new }}=\frac{1}{\sqrt{2 C}} \sqrt{1-\frac{1}{Q_{0}^{2}}} \text {. } \\
& Q_{0}^{\prime}=\frac{1}{R} \sqrt{\frac{L}{C}} \\
& =\frac{1}{0.01597} \sqrt{\frac{39.93 \mathrm{~m} / \mathrm{t}}{2 / \mathrm{F}}} \\
& =12.51 \\
& f_{r}=\frac{1}{2 \pi \sqrt{L C}}\left(\sqrt{1-\frac{1}{Q_{0}^{2}}}\right) \\
& \text { - Wm never }=\frac{1}{\sqrt{R c}}\left(\sqrt{1-\frac{1}{Q_{0}{ }^{2}}}\right) \\
& =\frac{1}{\sqrt{39,93 m \times 1}}\left(\sqrt{1-\frac{1}{(12.51)^{2}}}\right) \\
& 0.9967 \\
& =4.988 \mathrm{rad} / \mathrm{s} \text {; } \\
& B \cdot \omega=\frac{\omega_{r}}{\omega_{0}}=\frac{4.988}{12.5}=0.399 \mathrm{rad} / \mathrm{sc} .
\end{aligned}
$$

3) If $R=25 \Omega, L=0.5 \mathrm{H} \quad c=5 \mu \mathrm{~F}$. find w_{r}, Q and bandwidth for the che shown.

$$
\begin{aligned}
& f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{2 C}-\frac{R^{2}}{R^{2}}} \\
& w_{r}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}} . \\
& =\sqrt{\frac{1}{0,5 \times 5 \times 10^{-6}}-\frac{(25)^{2}}{(0,5)^{2}}} \\
& =630.476 \mathrm{rad} / \mathrm{sec} . \\
& Q=\frac{\omega L}{R} \\
& =\frac{630,476 \times 0,5 H}{25} \\
& =12.6095 \text {. } \\
& \text { B. } \omega=\frac{\omega_{r}}{Q_{0}}=\frac{630.476}{12.6095}= \\
& =50 \mathrm{rad} / \mathrm{sec} \text {. }
\end{aligned}
$$

A coil of $R=10 \Omega$ and $L=0.5 \mathrm{H}$ is Connected in Series. fth a capacitor. The current is maximum whew $f=50 \mathrm{H}_{2}$. A second capacitor is connected in parallel. with this chit. What capacitance must it have so that the comb acts like a non induct. ie resistor at 100 the. colculote the total Current supplied in each case if the applied Vg is 220 V .

$$
f_{0}=50 \mathrm{OH} \text {. }
$$

Let us calculate c_{1}, first,

$$
\begin{aligned}
& f_{0}=\frac{1}{2 \pi \sqrt{h C_{1}}} \\
& \sqrt{h C_{1}}=\frac{1}{2 \pi f_{0}} \\
& L C_{1}=\frac{1}{\left(2 \pi f_{0}\right)^{2}} \\
& C_{1}
\end{aligned}=\frac{1}{\left(2 \pi f_{0}\right)^{2} \times L}, ~=20.258 \times 10^{-6} \mathrm{~F} .
$$

$$
\begin{aligned}
& Z=\frac{L}{C Q} \\
&=\frac{10 \mu}{100 P \times 10} \\
&=\frac{10 \mathrm{~K}}{Q 0} \\
& Q_{0}=\frac{1}{R} \sqrt{\frac{L}{C}} \\
&=\frac{1}{10} \sqrt{\frac{10 \times 10^{-6}}{100 \times 10^{-12}}} \\
&=31.6227 \\
& I_{0}=\frac{V}{Z}=\frac{10 \varnothing}{1 \varnothing \mathrm{k}}=10 \mathrm{~mA} \\
& I_{C}=I_{L} \\
&=Q I \\
&=31.6227 \times 10 \mathrm{~m} \\
&=316.227 \mathrm{~mA} .
\end{aligned}
$$

Determine R_{L} and R_{c} for which che shown in f. resonate at are frequencies.

$$
\begin{aligned}
& \frac{R_{L}^{2}-\frac{L}{C}}{R_{C}^{2}-\frac{L}{C}}=1 \\
& R_{L}^{2}-\frac{L}{C}=R_{C}^{2}-\frac{L}{C} \\
& R_{L}^{2}-R_{C}^{2}=
\end{aligned}
$$

$$
f_{y}=\frac{1}{2 \pi \sqrt{L C}} \sqrt{\frac{R_{L}^{2}-\frac{L}{C}}{R_{c}^{2}-\frac{L}{C}}}
$$

$$
R_{L}^{2}-\frac{L}{C}=0
$$

$$
R_{L}^{2}=\frac{L}{C}
$$

$$
R_{L}=\sqrt{\frac{L}{C}}
$$

$$
=\sqrt{\frac{4 \times 10^{-3}}{40 \times 10^{-6}}}
$$

$$
=10 \Omega
$$

is connected in paralled with the above cter i\& 10 Admiltance.

$$
\begin{aligned}
& y_{T}=\frac{1}{R+\hat{\jmath}\left(\omega L-\frac{1}{\omega C_{1}}\right)}+\frac{1}{\frac{-\hat{\jmath}}{\omega C_{2}}} . \\
& \frac{\omega c_{2}}{-\hat{\gamma}} \times \frac{\hat{\jmath}}{\gamma}=\frac{\left.\omega c_{3} \hat{\jmath}\right]}{} \\
& =\frac{1}{R+\hat{\jmath}\left(\omega L-\frac{1}{\omega C_{1}}\right)}+\hat{\jmath} \omega C_{2} \\
& =\frac{R-\hat{\jmath}\left(\omega L-\frac{1}{\omega C_{1}}\right)}{R^{2}+\left(\hat{\omega L}-\frac{1}{\omega C_{1}}\right)^{2}}+\hat{\jmath} \omega C_{2} . \\
& =\frac{R}{R^{2}+\left(\omega L-\frac{1}{\omega C_{1}}\right)^{2}}+\hat{j}\left[\omega C_{2}-\frac{\left(\omega L-\frac{1}{\omega C 1}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C_{1}}\right)^{2}}\right]
\end{aligned}
$$

Above resonance, it must be purely resist.ne. hence susceptance showce be 0 .

$$
\begin{aligned}
& \text { At } f=100 H 2 \\
& \omega C_{2}=\frac{\left(\omega L-\frac{1}{\omega C_{1}}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C_{1}}\right)^{2}}=0 . \\
& \omega C_{2}=\frac{\left(\omega L-\frac{1}{\left.\omega C_{1}\right)}\right.}{R^{2}+\left(\omega L-\frac{1}{\omega C_{1}}\right)^{2}} . \\
& C_{2}=\frac{\omega\left(L-\frac{1}{\left.\omega^{2} C_{1}\right)}\right.}{\omega^{W}\left(R^{2}+\left(\omega L-\frac{1}{\left.\omega C_{1}\right)^{2}}\right]\right.} \\
& C_{2}=\frac{0.5-\frac{1}{(2 \pi \times 100)^{2} \times\left(20.2642 \times 10^{-6}\right)}}{10^{2}+\left(2 \pi \times 100 \times 0.5-\frac{1}{\left(2 \pi \times 100 \times 20.262 R_{10}\right)}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0.5-0.125}{}(10)^{2}+55540.45 \\
= & 6.7426 \\
= & 6.7397 \mathrm{MF} .
\end{aligned}
$$

with c, only in series RACe $c k t$, max current is g ven by

$$
I_{0}=\frac{V}{R}=\frac{220}{10}=22 \mathrm{~A} .
$$

With c_{2} in che, impedence at cher resonance

$$
\begin{aligned}
& \text { Or }=\frac{R}{R^{2}+\left(\omega L-\frac{1}{\omega O}\right)^{2}} \\
& z=\frac{R^{2}+\left(w-\frac{1}{w c_{1}}\right)^{2}}{R} \\
& =\frac{(10)^{2}+\left[2 \pi \times 100 \times 0.5-\left(\frac{1}{\left(2 \pi \times 100 \times 20.2642 \times 10^{-6}\right)}\right]^{2}\right.}{10} \\
& =\frac{100+(314.2-(0) 78.529 .97)^{2}}{10} \\
& =\frac{56.833 \times 10^{6}}{10} \frac{100+55540.82}{10} \\
& =5.6830 \times 10^{6} \Omega 2=5.564 \times 10^{3} \Omega \text {. }
\end{aligned}
$$

- Max Current

$$
I_{0}=\frac{220}{2 \text { ar }}=\frac{220}{5.5616 \times 10^{3}}=39.55 \mathrm{~mA} . \quad \text { Page } 362
$$

nd the value of A for which given che resonates at $\omega=\$ 000 \mathrm{rad} / \mathrm{sec}$

Total admittance of ene is given by.

$$
\begin{aligned}
y & =\left[\frac{1}{4+\hat{\jmath} x_{L}}+\frac{1}{8-\hat{\jmath} 12}\right] v \\
& =\frac{4-\hat{\jmath} x_{L}}{16+x_{L}^{2}}+\frac{8+\hat{\jmath} 12}{8^{2}+12^{2}} \\
& =\left(\frac{4}{4^{2}+x_{L}^{2}}+\frac{8}{8^{2}+12^{2}}\right)+\hat{\delta}\left(\frac{12}{8^{2}+12^{2}}-\frac{x_{L}}{16+x_{L}^{2}}\right) .
\end{aligned}
$$

At resonance, imaginary part is zero.

$$
\begin{aligned}
& \frac{12}{8^{2}+12^{2}}-\frac{x_{L}}{16+x_{L}^{2}}=0 \\
& \frac{12}{8^{2}+12^{2}}=\frac{x_{L}}{16+x_{L}^{2}} \\
& 12 \frac{3}{52}=\frac{x_{L}}{16+x_{L}^{2}} \\
& 3 x_{L}^{2}+48752 x_{L}=0 \\
& 3 x_{L}^{2}+52 x_{L}+48=0 \\
& x_{L}^{2}-\frac{52}{3} x_{L}+16=0 \\
& x_{L}=16.36 \text { or } 0.978
\end{aligned}
$$

$$
x_{L}=\frac{\frac{52}{3} \pm \sqrt{\left(\frac{52}{3}\right)^{2}-4}}{2}
$$

$$
=\frac{\frac{52}{3} \pm 15.377}{2}
$$

$$
=16.355 \text { or } 0.0
$$

or $\omega L=16.36$ or $\omega L=0.978$

$$
L L=16.36 \quad L=0.196 \mathrm{mH} .
$$

problems on series resonance $z=R\left[1+\hat{f} Q, \delta\left(\frac{2+\varepsilon}{1+e}\right)\right.$

$$
\begin{aligned}
& f_{0}=\frac{1}{2 \pi \sqrt{h c}} \\
& f_{a}=\sqrt{f_{1} f_{r}} \\
& B \omega= f_{2}-f_{1} \\
& B \cdot \omega=\frac{f_{0}}{Q} \\
& B \omega=\frac{R}{2 \pi L} \\
& f_{c}=\frac{1}{2 \pi} \sqrt{\frac{1}{L c}-\frac{R^{2}}{2}} \\
& f_{L}=\frac{1}{2 \pi \sqrt{2 c-\frac{R^{2} c^{2}}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& Q=\frac{V_{L}}{V} \text { or } \quad V_{L}=Q V \\
& Q=\frac{V_{C}}{V} \text { or } \quad V_{C}=Q V \\
& Q=\frac{X_{L}}{R}=\frac{\omega_{0} L}{R} \\
& Q=\frac{1}{\omega_{0} c R} \\
& Q=\frac{1}{R} \sqrt{\frac{L}{C}} \\
& Q=\frac{f_{0}}{f_{2}-f!}
\end{aligned}
$$

1. In a series aLe che driven with a sinusoidal ac. voltage source determine value of C required to achieve resonance in a ckt at $5 \mathrm{kH2}$ if value of resistance s inductance are 2Ω and 1 mH respectively.

$$
R=2 \Omega \quad L=1 \mathrm{mH}
$$ to $=5 k+2$.

$$
\begin{aligned}
& t_{0}=\frac{1}{2 \pi \sqrt{2 c}} \\
& \sqrt{2 c}=\frac{1}{2 \pi f_{0}}
\end{aligned}
$$

$$
L C=\frac{1}{(2 \pi 60)^{2}}
$$

$$
C=\frac{1}{\left(2 \pi 6_{0}\right)^{2} \times L}
$$

$$
=1.013 \times 10^{-6} E
$$

$$
\begin{aligned}
V_{L} & =I_{0}\left(j x_{L}\right) \\
& =j \frac{V}{R}\left(\omega_{0} L\right) \\
& =j\left(Q_{0}\right) V \\
V_{C} & =I_{0}\left(-j x_{C}\right) \\
& =\frac{V}{R}(-j / \omega c) \\
& =-j v Q_{0}
\end{aligned}
$$

$$
=1.013 \mu E
$$

A series RLC ckt Consists of a res. stance of $k \Omega 2$ \& an inductance of 100 mH in series with apacitance of 10 PE . If 100 V is applied as IP across the Combs determine
resonant freq $i i$) mon current in the che
\therefore Q factor of ckt
, V) half power frequencies

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}} \quad \begin{aligned}
& R=1 \mathrm{k} \Omega \\
& L=100 \mathrm{~m} \\
& c=10 \mathrm{PF}
\end{aligned}
$$

$$
=\frac{1}{2 \pi \sqrt{100 \times 10^{-3} \times 10 \times 10^{-12}}}
$$

$$
=159.13 \mathrm{kH}^{2}
$$

$\therefore I_{0}=\frac{V}{R}=\frac{100}{1000}=0.1 \mathrm{~A}$
iii) $\theta_{0}=\frac{1}{R} \sqrt{\frac{r}{c}}=\frac{1}{1000} \sqrt{\frac{100 \mathrm{~m}}{10 \times 10^{-12}}}=100$. of $Q=\frac{\omega L}{R}=\frac{2 \pi f^{* L}}{R}=100$.
iv
iv) $f_{1} \& t_{2}$

$$
\begin{aligned}
& f_{1}=\frac{1}{2 \pi}\left[-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right] \\
& f_{2}=\frac{1}{2 \pi}\left[\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right] \\
& \sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}=\sqrt{\left(\frac{1000)}{2 \times 100 \times 10^{-3}}\right)^{2}+\frac{1}{100 \times 10^{-3} \times 10 \times 10^{-12}}} \\
& =\frac{1000002.5}{f_{1}}=\frac{1}{2 \pi} \frac{R}{2 L}=\frac{1000}{2 \times 100 \times 10^{-3}}=5000 \\
& f_{1}=\frac{1}{2 \pi}[-5000+1000002.5] \\
& = \\
& f_{2}=\frac{1}{2 \pi}[5000+1000002.5] \pi=3.142 \\
& =159.93 k H 2
\end{aligned}
$$

or $B \cdot w A f_{2}=f_{2}=\frac{R}{2 \pi L}$

$$
\begin{aligned}
& \Delta f_{f}=\frac{R}{2 \pi L} . \\
& \Delta f=\frac{R}{2 \pi L}=\frac{1000}{2 \pi \times 100 \times 10^{3}}=795.67112 \\
&=1591.34 \mathrm{~Hz} \\
& f_{1}=f_{0}-\frac{\Delta f}{2}=159.13 k-795.67 \\
& f_{2}=f_{0}+\frac{\Delta f}{2}=158.33 \mathrm{~K} .
\end{aligned}
$$

In series Rho che with variable capacitance, the Current is at mex value with capacitance of $20 \mu \mathrm{t}$ and the current reduces 0.707 tiros max value with Capacitance of $30 \mu \mathrm{~F}$. Find the values of R and L. what is the B.w of ckt if supply $v g$ is

$$
\begin{aligned}
& 20 \sin \left(6.28 \times 10^{3}\right) t \text { Vole } \\
& V=V m \sin \omega t
\end{aligned}
$$

$$
W=6.28 \times 10^{3}
$$

this is tuning ckt $\Rightarrow, i f_{i}=f r$.

$$
\begin{aligned}
f_{r} & =\frac{\omega}{2 \pi}=\omega=2 \pi f \Rightarrow f=\frac{w}{2 \pi} \\
f_{0}=f_{r} & =\frac{6.28 \times 10^{3}}{2 \times \pi}=1000 \mathrm{tz} 2 \\
f_{0} & =\frac{1}{2 \pi \sqrt{h c}} \quad \text { at resoncencs } \quad c=20 \mu \mathrm{E} . \\
\sqrt{h c} & =\frac{1}{2 \pi f 0} \\
L & =\frac{1}{\left(2 \pi f_{0}\right)^{2} c} \\
& =\frac{1}{(2 \pi \times 1000)^{2} \times 20 \times \frac{6}{10}} \\
L & =1.2662 \mathrm{mtt} .
\end{aligned}
$$

At half power freq current becomes 0.707 t, of its max value with $c=30 \mu t$. \& reopesstal at this reactance is given by of the ckt.
stage

$$
\begin{aligned}
& |x|=x_{L}-x_{C}=\left(\omega L-\frac{1}{\omega C}\right) \\
& * W_{L}=2 \pi f_{0} L=2 \pi \times 1000 \times 1.2662 \times 10^{-3}=7.197 .02 \\
& \omega c=2 \pi \text { oc }=2 \pi \text { fo } \times 30 \times 10^{-6}= \\
& |x|=\left(7.957-\frac{1}{0.1885}\right) \\
& x=2.652 \Omega \text {. } \\
& z=R+\hat{y} x= \\
& \therefore \text { rus rance } R=X=2.652 \Omega \text {. } \\
& 5.307 \Omega \\
& \text { At } \\
& \left.2=R+f f_{t}-x_{c}\right) \\
& \text { At, fr } 2=R \\
& \text { at } t_{1}=2=\sqrt{2} R \\
& \begin{array}{l}
f_{f} R=x_{L}-x_{c} . \\
R=x_{c}-x_{L} .
\end{array} \\
& B . \omega=\frac{f_{0}}{Q_{0}}=\frac{f_{0}}{\frac{\omega_{0} L}{R}}=100 \\
& Q=\frac{\omega_{0} L}{R}=\frac{7.957}{2.652}=3 . \\
& \therefore B, W=\frac{f_{0}}{Q}=\frac{1000+12}{3}=333.33 \mathrm{H2} \text {. }
\end{aligned}
$$

Fore the CRt show on. Determine the following
i) $f o$
ii) Q
iii) Half power freq

1V) Band width

$$
\text { total } R=12,5 k+50 k=62.5 k
$$

$$
\begin{aligned}
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
&=\frac{1}{2 \pi \sqrt{\frac{3}{2} \times 10^{-3} \times 1.25 \times 10^{-12}}} \\
&=3.675 M 1 t 2=3675049.454 \\
&=36750.495 \times 10^{3} \\
& Q=\frac{W L}{R}=\frac{2 \pi f_{0} L}{R}=\frac{2 \pi f_{0} L}{R}=5.543
\end{aligned}
$$

or $\quad Q_{0}=\frac{1}{R} \sqrt{\frac{L}{C}}=$

$$
\begin{aligned}
Q_{0}=\frac{1}{R} \int \frac{L}{c} & = \\
B \cdot \omega=f & =f_{2}-f_{1}=\frac{f_{0}}{c_{0}}=\frac{36750.495 \times 10^{3}}{5.543} \\
\Delta f & =6630.073 \mathrm{kH2} \\
\frac{\mathrm{cH}^{2}}{2} & =335.037 \mathrm{kH2} . \\
f_{1}=f_{0}-\frac{\Delta f}{2} & =33435.458 \times 10^{3}=33.435 \times 10^{6} \\
f_{2}=f_{0}+\frac{\Delta f}{2} & =40065.5 \mathrm{KH2}=40.066 \mathrm{MH2}
\end{aligned}
$$

6) A coil is Connected in series with a Varia Fo Capacitor across $V(t)=10 \cos 1000 t$.

The capacitor is varifing $\&_{r}$ aurrent is max when $C=10 \mu \mathrm{E}$, when $C=12.5 \mu \mathrm{E}$, the Current is 0.707 times the max value. Find $1, R 8 Q$ of the will

$$
\begin{aligned}
& \omega=1000 \not p \quad \quad \text { tuning ckt } f_{1}=f r \\
& f_{0}=\frac{\omega}{2 \pi}=\frac{1000}{2 \pi} \times 159.1341+2 . \\
& f=\frac{1}{2 \pi \sqrt{h c}} .
\end{aligned}
$$

at fo $9 \quad c=10 \times 10^{-6}$.

$$
\begin{aligned}
& \sqrt{L C}=\frac{1}{2 \pi f} \\
& k=\frac{1}{2 \pi t}=\frac{1}{(2 \pi t)^{2} \times c}=\frac{1}{(2 \pi \times 159.134)^{2} \times 10 \times 10^{6}} \\
& L=0.1 \mathrm{H} \text {. } \\
& f_{1} \& t_{2} \\
& R=\left|x_{L}-x_{C}\right| \\
& =\omega L-\frac{1}{\omega c} \text {. } \\
& \left\{\begin{array}{l}
\omega L=1000 \times 0.1=100 \\
\omega c=1000 \times 12.5 \times 10^{-6}=0.0125
\end{array}\right. \\
& R=\left[100-\frac{1}{0.0125}\right] \\
& R=20 \Omega \text {. } \\
& Q=\frac{W L}{R}=\frac{1000 \times 0.1}{20}=\frac{100}{20}=5
\end{aligned}
$$

